期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite 被引量:3
1
作者 S.M.J.Razavi R.Esmaeely Neisiany +2 位作者 S.Nouri Khorasani S.Ramakrishna f.berto 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期126-131,共6页
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t... This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites. 展开更多
关键词 Carbon fiber reinforced polymer Delamination Fracture test Nanofibers Al2O3 nanoparticles
下载PDF
The effect of fiber orientation on fracture response of metallic fiber-reinforced adhesive thin films 被引量:1
2
作者 S.M.J.Razavi L.Sandnes +1 位作者 J.Torgersen f.berto 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第1期43-47,共5页
Incorporation of metallic fibers into the adhesive layer can significantly improve the mechanical behavior of the adhesive joint. This paper aims to assess the fracture behavior of an epoxy adhesive reinforced by long... Incorporation of metallic fibers into the adhesive layer can significantly improve the mechanical behavior of the adhesive joint. This paper aims to assess the fracture behavior of an epoxy adhesive reinforced by longitudinal and lateral metallic fibers. Double cantilever beam(DCB) specimens were used to obtain the fracture energy of both non-reinforced and reinforced adhesives under mode I loading condition. In addition to the fiber orientation, the distance between the metal fibers was considered as the second key parameter in the experiments. It was concluded that although incorporation of metallic fibers in the adhesive layer improves the fracture behavior of neat adhesive, however, higher improvements were observed for the adhesive reinforced with longitudinal fibers. Furthermore, reducing the fiber distances resulted in higher values of fracture energy. 展开更多
关键词 Double CANTILEVER beam(DCB) FRACTURE energy Metal fibers THIN film Toughened ADHESIVE
下载PDF
A New Analytical Expression for the Relationship Between the Charpy Impact Energy and Notch Tip Position for Functionally Graded Steels 被引量:1
3
作者 H.Samareh Salavati Pour f.berto Y.Alizadeh 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第3期232-240,共9页
The effect of the distance between the notch tip and the position of the middle phase in the FGSs on the Charpy impact energy is investigated in the present paper. The results show that when the notch apex is close to... The effect of the distance between the notch tip and the position of the middle phase in the FGSs on the Charpy impact energy is investigated in the present paper. The results show that when the notch apex is close to the middle layer, the Charpy impact energy reaches its maximum value. This is due to the increment of the absorbed energy by plastic deformation ahead of the notch tip. On the other hand, when the notch tip is far from the middle layer, the Charpy impact energy strongly decreases. Another fundamental motivation of the present work is that for crack arrester configuration, no accurate mathematical or analytical modelling is available up to now. By considering the relationship between the Charpy impact energy and the plastic volume size, a new theoretical model has been developed to link the Charpy impact energy with the distance from the notch apex to the middle phase. This model is a simplified one and the effect of different shapes of the layers and the effect of microstructureon the mechanical properties and plastic region size will be considered in further investigation. The results of the new developed closed form expression show a sound agreement with some recent experimental results taken from the literature. 展开更多
关键词 Charpy impact energy Functionally graded steel Crack divider configu- ration Crack arrester configuration
原文传递
Local Strain Energy Density Applied to Bainitic Functionally Graded Steels Plates Under Mixed-Mode(Ⅰ+Ⅱ) Loading
4
作者 H.Salavati Y.Alizadeh f.berto 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第2期164-172,共9页
In this paper, the averaged value of the strain energy density (SED) over a control volume is used to predict the critical load of V-notched specimens made of functionally graded steels (FGSs) under mixed-mode loa... In this paper, the averaged value of the strain energy density (SED) over a control volume is used to predict the critical load of V-notched specimens made of functionally graded steels (FGSs) under mixed-mode loading. The studied FGSs contain ferritic and austenite phases in addition to bainitic layer produced by electroslag remelting. The mechanism- based strain gradient plasticity theory is used to determine the flow stress (yield stress or ultimate stress) of each layer. The Young's modulus and the Poisson's ratio have been assumed to be constant, while other mechanical properties vary exponentially along the specimen width. The control volume is centered in relation to the maximum principal stress present on the notch edge and assumes a crescent shape. The points belonging to the volume perimeter are obtained numerically. In the present contribution, the effects of notch radius and notch depth on the SED and the critical load are studied. The notch radius varies from 0.2 to 2.0 mm, and the notch depth varies from 5 to 7 ram. By using the SED approach and finite element simulations, the critical load is determined, and the obtained results show a sound agreement with the experimental results. 展开更多
关键词 Functionally bainitic graded steel Strain energy density Mechanism-based strain gradientplasticity theory Critical load Notch radius Notch depth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部