Rapid development of solid-state lighting technology requires new materials with highly efficient and stable luminescence,and especially relies on blue light pumped red phosphors for improved light quality.Herein,we d...Rapid development of solid-state lighting technology requires new materials with highly efficient and stable luminescence,and especially relies on blue light pumped red phosphors for improved light quality.Herein,we discovered an unprecedented red-emitting Mg_(2)AI_(4)Si_(5)0_(18):Eu^(2+)composite phosphor(λex=450 nm,λem=620 nm)via the crystallization of MgO-AI_(2)O_(3)-Sio_(2) aluminosilicate glass.Combined experimental measurement and first-principles calculations verify that Eu^(2+)dopants insert at the vacant channel of Mg_(2)AI_(4)Si_(5)0_(18)crystal with six-fold coordination responsible for the peculiar red emission.Importantly,the resulting phosphor exhibits high internal/external quantum efficiency of 94.5/70.6%,and stable emission against thermal quenching,which reaches industry production.The maximum luminous flux and luminous efficiency of the constructed laser driven red emitting device reaches as high as 274 Im and 54lm W^(-1),respectively.The combinations of extraordinary optical properties coupled with economically favorable and innovative preparation method indicate,that the Mg_(2)AI_(4)Si_(5)0_(18):Eu^(2+)composite phosphor will provide a significant step towards the development of high-power solid-state lighting.展开更多
基金the National Natural Science Foundations of China(Grant Nos.51972118,51961145101,51722202 and 11974022)the Guangzhou Science&Technology Project(202007020005)+1 种基金the Fundamental Research Funds for the Central Universities(D2190980)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137).
文摘Rapid development of solid-state lighting technology requires new materials with highly efficient and stable luminescence,and especially relies on blue light pumped red phosphors for improved light quality.Herein,we discovered an unprecedented red-emitting Mg_(2)AI_(4)Si_(5)0_(18):Eu^(2+)composite phosphor(λex=450 nm,λem=620 nm)via the crystallization of MgO-AI_(2)O_(3)-Sio_(2) aluminosilicate glass.Combined experimental measurement and first-principles calculations verify that Eu^(2+)dopants insert at the vacant channel of Mg_(2)AI_(4)Si_(5)0_(18)crystal with six-fold coordination responsible for the peculiar red emission.Importantly,the resulting phosphor exhibits high internal/external quantum efficiency of 94.5/70.6%,and stable emission against thermal quenching,which reaches industry production.The maximum luminous flux and luminous efficiency of the constructed laser driven red emitting device reaches as high as 274 Im and 54lm W^(-1),respectively.The combinations of extraordinary optical properties coupled with economically favorable and innovative preparation method indicate,that the Mg_(2)AI_(4)Si_(5)0_(18):Eu^(2+)composite phosphor will provide a significant step towards the development of high-power solid-state lighting.