期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Modeling and Simulation for High Energy Sub-Nuclear Interactions Using Evolutionary Computation Technique
1
作者 Mahmoud Y. el-Bakry el-sayed A. el-dahshan +2 位作者 Amr Radi Mohamed Tantawy Moaaz A. Moussa 《Journal of Applied Mathematics and Physics》 2016年第1期53-65,共13页
High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary comp... High energy sub-nuclear interactions are a good tool to dive deeply in the core of the particles to recognize their structures and the forces governed. The current article focuses on using one of the evolutionary computation techniques, the so-called genetic programming (GP), to model the hadron nucleus (h-A) interactions through discovering functions. In this article, GP is used to simulate the rapidity distribution  of total charged, positive and negative pions for p<sup>-</sup>-Ar and p<sup>-</sup>-Xe interactions at 200 GeV/c and charged particles for p-pb collision at 5.02 TeV. We have done so many runs to select the best runs of the GP program and finally obtained the rapidity distribution  as a function of the lab momentum , mass number (A) and the number of particles per unit solid angle (Y). In all cases studied, we compared our seven discovered functions produced by GP technique with the corresponding experimental data and the excellent matching was so clear. 展开更多
关键词 Modeling Simulation Evolutionary Computation Genetic Programming Hadron-Nucleus Interaction Rapidity Distribution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部