We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form ...We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.展开更多
Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov...Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.展开更多
We inquire into spin and pseudospin symmetries of the Dirac equation under a Mbius square-type potential using the Nikiforov-Uvarov method to calculate the bound state solutions. We numerically discuss the problem and...We inquire into spin and pseudospin symmetries of the Dirac equation under a Mbius square-type potential using the Nikiforov-Uvarov method to calculate the bound state solutions. We numerically discuss the problem and include various explanatory figures.展开更多
An approximate analytical solution of the Dirac equation is obtained for the ring-shaped Woods-Saxon potential within the framework of an exponential approximation to the centrifugal term. The radial and angular parts...An approximate analytical solution of the Dirac equation is obtained for the ring-shaped Woods-Saxon potential within the framework of an exponential approximation to the centrifugal term. The radial and angular parts of the equation are solved by the Nikiforov-Uvarov method. The general results obtained in this work can be reduced to the standard forms already present in the literature.展开更多
We investigate the approximate solution of the Dirac equation for a combination of Mobius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the boun...We investigate the approximate solution of the Dirac equation for a combination of Mobius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.展开更多
We investigate the approximate solution of the Dirac equation for energy-dependent pseudoharmonic and Mie-type potentials under the pseudospin and spin symmetries using the supersymmetry quantum mechanics. We obtain t...We investigate the approximate solution of the Dirac equation for energy-dependent pseudoharmonic and Mie-type potentials under the pseudospin and spin symmetries using the supersymmetry quantum mechanics. We obtain the bound-state energy equation in an analytical manner and comment on the system behavior via various figures and tables.展开更多
Considering of a tensor interaction in Dirac equation removes the degeneracy in spin and pseudospin doublets and consequently leads to results consistent with the experimental data. Here, instead of the commonly used ...Considering of a tensor interaction in Dirac equation removes the degeneracy in spin and pseudospin doublets and consequently leads to results consistent with the experimental data. Here, instead of the commonly used Coulomb or linear terms, we investigate a tensor interaction of Yukawa form. We obtain arbitrary state solutions of Dirac equation under vector, scalar and tensor Yukawa potentials via a physical approximation and the Nikiforov-Uvarov methodology. The solutions are discussed in detail.展开更多
文摘We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.
文摘Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.
文摘We inquire into spin and pseudospin symmetries of the Dirac equation under a Mbius square-type potential using the Nikiforov-Uvarov method to calculate the bound state solutions. We numerically discuss the problem and include various explanatory figures.
文摘An approximate analytical solution of the Dirac equation is obtained for the ring-shaped Woods-Saxon potential within the framework of an exponential approximation to the centrifugal term. The radial and angular parts of the equation are solved by the Nikiforov-Uvarov method. The general results obtained in this work can be reduced to the standard forms already present in the literature.
文摘We investigate the approximate solution of the Dirac equation for a combination of Mobius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.
文摘We investigate the approximate solution of the Dirac equation for energy-dependent pseudoharmonic and Mie-type potentials under the pseudospin and spin symmetries using the supersymmetry quantum mechanics. We obtain the bound-state energy equation in an analytical manner and comment on the system behavior via various figures and tables.
文摘Considering of a tensor interaction in Dirac equation removes the degeneracy in spin and pseudospin doublets and consequently leads to results consistent with the experimental data. Here, instead of the commonly used Coulomb or linear terms, we investigate a tensor interaction of Yukawa form. We obtain arbitrary state solutions of Dirac equation under vector, scalar and tensor Yukawa potentials via a physical approximation and the Nikiforov-Uvarov methodology. The solutions are discussed in detail.