Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for ...Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for GPM(IMERG) and its predecessor, the Tropical Rainfall Measuring Mission(TRMM) Multi-satellite Precipitation Analysis(TMPA), are statistically evaluated over the Tibetan Plateau(TP), with an emphasis on the diurnal variation.The results indicate that:(1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m;(2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and(3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion,GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.展开更多
Soil moisture is an essential climate variable(ECV) concerned widely. Due to its high spatial variability, it is costly to measure soil moisture at tens of kilometers scale. In this study, a ten-year(2002–2011) daily...Soil moisture is an essential climate variable(ECV) concerned widely. Due to its high spatial variability, it is costly to measure soil moisture at tens of kilometers scale. In this study, a ten-year(2002–2011) daily soil moisture dataset at 0.25° spatial resolution for Chinese mainland was produced through assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System(AMSR-E) brightness temperature(TB) data into a land surface model(LSM). The obtained soil moisture data was evaluated against soil moisture-measuring networks deployed in two wet areas and one dry area of the Tibetan Plateau.The results show that for the wet areas the accuracy of the soil moisture product obtained from the assimilation is considerably higher than that of both AMSR-E official soil moisture products and land surface simulation results, and for the dry area their accuracy is comparable to each other. The spatial pattern of the soil moisture from the new product is consistent with that of soil porosity from an independent survey-based dataset, further confirming the credibility of the new product. According to this product, the transition regions in China show stronger seasonal variation of soil moisture than dry and wet regions, and drier regions have stronger inter-annual variability of soil moisture than wetter regions, particularly during transitional seasons(spring and autumn). The soil moisture product is accessible at the National Tibetan Plateau Data Center.展开更多
The ambient air quality standard(AAQS)is a vital policy instrument for protecting the environment and human health.Hainan Province is at the forefront of China's efforts to protect its ecological environment,with ...The ambient air quality standard(AAQS)is a vital policy instrument for protecting the environment and human health.Hainan Province is at the forefront of China's efforts to protect its ecological environment,with an official goal to achieve world-leading air quality by 2035.However,neither the national AAQS nor the World Health Organization guideline offers sufficient guidance for improving air quality in Hainan because Hainan has well met the former while the latter is excessively stringent.Consequently,the establishment of Hainan's local AAQS becomes imperative.Nonetheless,research regarding the development of local AAQS is scarce,especially in comparatively more polluted countries such as China.The relatively high background values and significant interannual fluctuations in air pollutant concentrations in Hainan present challenges in the development of local AAQS.Our research proposes a world-class local AAQS of Hainan Province by reviewing the AAQS in major countries or regions worldwide,analyzing the influence of different statistical forms,and carefully evaluating the attainability of the standard.In the proposed AAQS,the annual mean concentration limit for PM2.5,the annual 95th percentile of daily maximum 8-h mean(MDA8)concentration limit for O_(3),and the peak season concentration limit for O_(3) are set at 10,120,and 85μg/m^(3),respectively.Our study indicates that,with effective control policies,Hainan is projected to achieve compliance with the new standard by 2035.The implementation of the local AAQS is estimated to avoid 1,526(1,253–1,789)and 259(132–501)premature deaths attributable to longterm exposure to PM2.5 and O_(3) in Hainan in 2035,respectively.展开更多
The information revolution has been one of the driving forces to the innovation in geography. However, environmental remote sensing, geographic information science and technology, and geocomputing, which once resided ...The information revolution has been one of the driving forces to the innovation in geography. However, environmental remote sensing, geographic information science and technology, and geocomputing, which once resided within the family of geography, are gradually moving close to information science but are alienated from geography. Therefore, it is necessary to reexamine the interactive convergence of geography and information science, and advance the disciplinary system of geographic science to accommodate the researches with information as subjects and methods. In this paper, we propose to reformulate the relationship between geographic science and information science with a new discipline, i.e., information geography, which not only refers to the geography of information but also a methodological system for studying geography using information science.This paper summarizes the background of information geography’s emergence, its definition, and the difference and similarities with other disciplinary concepts. The impact of information geography on geographic paradigm shift is also investigated from the ontological, epistemological, and methodological perspectives.展开更多
Dear Editor,Atovaquone(ATO),a mitochondrial inhibitor,has anti-cancer effects[1].Based on ATO,we developed mitochondria-targeted atovaquone(Mito-ATO)that had even stronger anti-tumor efficacy than ATO[2].We syn-thesiz...Dear Editor,Atovaquone(ATO),a mitochondrial inhibitor,has anti-cancer effects[1].Based on ATO,we developed mitochondria-targeted atovaquone(Mito-ATO)that had even stronger anti-tumor efficacy than ATO[2].We syn-thesized Mito-ATO by attaching the bulky triphenylphos-phonium(TPP)group to ATO via a ten-carbon alkyl chain(Supplementary file of methods;Supplementary Figure S1).展开更多
Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different area...Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.展开更多
Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models...Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.展开更多
Lithium-sulfur (Li-S) batteries have drawn extensive attentions due to their high energy density, environmental friendliness and low cost. In this study, three-dimensional (3D) graphene/S hybrid (G/S) is prepare...Lithium-sulfur (Li-S) batteries have drawn extensive attentions due to their high energy density, environmental friendliness and low cost. In this study, three-dimensional (3D) graphene/S hybrid (G/S) is prepared by a one-pot hydrothermal method together with redox reaction between S-based compound and graphene oxide (GO). G/S has a three dimensional porous structure, where graphene is interconnected with each other forming a 3D conductive network. It demonstrates that the pore structure of G/S can be well controlled by optimizing the drying method of the 3D graphene-based materials. Freeze drying and evaporation-induced drying can induce different density and pore structure of G/S. Electrochemical tests illustrate that the resulting hybrid can deliver a specific capacity of 891 mAh·g^-1 and 575 mAh·g^-1 for the 1^st and 100^th cycle at a current density of 500 mAh·g^-1 .展开更多
OBJECTIVE: To observe the clinical effect of Cidan capsules, a traditional Chinese medicine applied as an antitumor drug for decades, on the treatment of primary hepatocellular carcinoma(HCC). A two-month experimen...OBJECTIVE: To observe the clinical effect of Cidan capsules, a traditional Chinese medicine applied as an antitumor drug for decades, on the treatment of primary hepatocellular carcinoma(HCC). A two-month experiment was carried out. METHODS: A total of 325 patients with primary HCC were randomly divided into 3 groups. The 125 patients in Group A were treated with Cidan capsules exclusively. The 100 patients in Group B were treated with Cidan capsules combined with chemotherapy. And as control group, the 100 patients in Group C were treated by chemotherapy only. The efficacy of Cidan was analyzed by monitoring associated symptoms and liver function tests and measuring the levels of the NK cell, CD3, CD4, CRJ and CD8, alpha fetoprotein(AFP). The evaluation of Cidan's effects on enhancing the patients' life quality was through clinical and pathological observations. RESULTS: The result showed that the steady rate following the standard for evaluation of Kamofsky was over 87.0% in group B, 72.0% in Group A and 57.0% in Group C, respectively. The life quality of the patients treated with Cidan capsules and chemotherapy was improved more obviously than that in Group A and C. The NK cell,CD3, CD4,CRJ and CD8 in Group C were obviously decreased, while those in Group A and Group B were without apparent vacillation. AFP descended markedly in Group A and B, but did not in Group C. CONCLUSION: Cidan capsules combined with chemotherapy had superior curative effects on primary HCC.展开更多
基金Supported by the National Natural Science Foundation of China(91437221 and 41775097)Science and Technology Planning Project of Guangdong Province(2017B020218003)Natural Science Foundation of Guangdong Province(2016A030313140)
文摘Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for GPM(IMERG) and its predecessor, the Tropical Rainfall Measuring Mission(TRMM) Multi-satellite Precipitation Analysis(TMPA), are statistically evaluated over the Tibetan Plateau(TP), with an emphasis on the diurnal variation.The results indicate that:(1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m;(2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and(3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion,GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFA0605400)the Frontier Science Project of Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC011-03)+1 种基金the National Natural Science Foundation of China (Grant No. 91537210)the 13th Five-year Informatization Plan of Chinese Academy of Sciences (Grant No. XXH13505-06)。
文摘Soil moisture is an essential climate variable(ECV) concerned widely. Due to its high spatial variability, it is costly to measure soil moisture at tens of kilometers scale. In this study, a ten-year(2002–2011) daily soil moisture dataset at 0.25° spatial resolution for Chinese mainland was produced through assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System(AMSR-E) brightness temperature(TB) data into a land surface model(LSM). The obtained soil moisture data was evaluated against soil moisture-measuring networks deployed in two wet areas and one dry area of the Tibetan Plateau.The results show that for the wet areas the accuracy of the soil moisture product obtained from the assimilation is considerably higher than that of both AMSR-E official soil moisture products and land surface simulation results, and for the dry area their accuracy is comparable to each other. The spatial pattern of the soil moisture from the new product is consistent with that of soil porosity from an independent survey-based dataset, further confirming the credibility of the new product. According to this product, the transition regions in China show stronger seasonal variation of soil moisture than dry and wet regions, and drier regions have stronger inter-annual variability of soil moisture than wetter regions, particularly during transitional seasons(spring and autumn). The soil moisture product is accessible at the National Tibetan Plateau Data Center.
基金supported by the National Key R&D Program of China(2022YFC3700702)the Energy Foundation,and the Tsinghua-Toyota Joint Research Institute Inter-disciplinary Program.
文摘The ambient air quality standard(AAQS)is a vital policy instrument for protecting the environment and human health.Hainan Province is at the forefront of China's efforts to protect its ecological environment,with an official goal to achieve world-leading air quality by 2035.However,neither the national AAQS nor the World Health Organization guideline offers sufficient guidance for improving air quality in Hainan because Hainan has well met the former while the latter is excessively stringent.Consequently,the establishment of Hainan's local AAQS becomes imperative.Nonetheless,research regarding the development of local AAQS is scarce,especially in comparatively more polluted countries such as China.The relatively high background values and significant interannual fluctuations in air pollutant concentrations in Hainan present challenges in the development of local AAQS.Our research proposes a world-class local AAQS of Hainan Province by reviewing the AAQS in major countries or regions worldwide,analyzing the influence of different statistical forms,and carefully evaluating the attainability of the standard.In the proposed AAQS,the annual mean concentration limit for PM2.5,the annual 95th percentile of daily maximum 8-h mean(MDA8)concentration limit for O_(3),and the peak season concentration limit for O_(3) are set at 10,120,and 85μg/m^(3),respectively.Our study indicates that,with effective control policies,Hainan is projected to achieve compliance with the new standard by 2035.The implementation of the local AAQS is estimated to avoid 1,526(1,253–1,789)and 259(132–501)premature deaths attributable to longterm exposure to PM2.5 and O_(3) in Hainan in 2035,respectively.
文摘The information revolution has been one of the driving forces to the innovation in geography. However, environmental remote sensing, geographic information science and technology, and geocomputing, which once resided within the family of geography, are gradually moving close to information science but are alienated from geography. Therefore, it is necessary to reexamine the interactive convergence of geography and information science, and advance the disciplinary system of geographic science to accommodate the researches with information as subjects and methods. In this paper, we propose to reformulate the relationship between geographic science and information science with a new discipline, i.e., information geography, which not only refers to the geography of information but also a methodological system for studying geography using information science.This paper summarizes the background of information geography’s emergence, its definition, and the difference and similarities with other disciplinary concepts. The impact of information geography on geographic paradigm shift is also investigated from the ontological, epistemological, and methodological perspectives.
基金This research was supported by National Insti-tutes of Health(NIH):R01CA223804,R01CA232433,R01CA205633,and R01CA280746.
文摘Dear Editor,Atovaquone(ATO),a mitochondrial inhibitor,has anti-cancer effects[1].Based on ATO,we developed mitochondria-targeted atovaquone(Mito-ATO)that had even stronger anti-tumor efficacy than ATO[2].We syn-thesized Mito-ATO by attaching the bulky triphenylphos-phonium(TPP)group to ATO via a ten-carbon alkyl chain(Supplementary file of methods;Supplementary Figure S1).
基金supported by a Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030004)the Collaborative Observation and Multisource Real-time Data Fusion and Analysis Technology & Innovation team (Grant No.GRMCTD202103)the Foshan Special Project on Science and Technology in Social Field (Grant No.2120001008761)。
文摘Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41930759,42325502)the West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202215)+2 种基金the Chinese Academy Sciences Talents Program,National Cryosphere Desert Data Centerthe Qinghai Key Laboratory of Disaster Prevention(Grant No.QFZ-2021-Z02)2023 First Batch of Science and Technology Plan Projects of Lanzhou City(Grant No.2023-1-49)。
文摘Hydrological modeling,leveraging mathematical formulations to represent the hydrological cycle,is a pivotal tool in representing the spatiotemporal dynamics and distribution patterns inherent in hydrology.These models serve a dual purpose:they validate theoretical robustness and applicability via observational data and project future trends,thereby bridging the understanding and prediction of natural processes.In rapid advancements in computational methodologies and the continuous evolution of observational and experimental techniques,the development of numerical hydrological models based on physicallybased surface-subsurface process coupling have accelerated.Anchored in micro-scale conservation principles and physical equations,these models employ numerical techniques to integrate surface and subsurface hydrodynamics,thus replicating the macro-scale hydrological responses of watersheds.Numerical hydrological models have emerged as a leading and predominant trend in hydrological modeling due to their explicit representation of physical processes,heightened by their spatiotemporal resolution and reliance on interdisciplinary integration.This article focuses on the theoretical foundation of surface-subsurface numerical hydrological models.It includes a comparative and analytical discussion of leading numerical hydrological models,encompassing model architecture,numerical solution strategies,spatial representation,and coupling algorithms.Additionally,this paper contrasts these models with traditional hydrological models,thereby delineating the relative merits,drawbacks,and future directions of numerical hydrological modeling.
基金Acknowledgement We appreciate support from National Basic Research Program of China (2014CB932403) and National Natural Science Foundation of China (Nos. 51372167 and 51302146).
文摘Lithium-sulfur (Li-S) batteries have drawn extensive attentions due to their high energy density, environmental friendliness and low cost. In this study, three-dimensional (3D) graphene/S hybrid (G/S) is prepared by a one-pot hydrothermal method together with redox reaction between S-based compound and graphene oxide (GO). G/S has a three dimensional porous structure, where graphene is interconnected with each other forming a 3D conductive network. It demonstrates that the pore structure of G/S can be well controlled by optimizing the drying method of the 3D graphene-based materials. Freeze drying and evaporation-induced drying can induce different density and pore structure of G/S. Electrochemical tests illustrate that the resulting hybrid can deliver a specific capacity of 891 mAh·g^-1 and 575 mAh·g^-1 for the 1^st and 100^th cycle at a current density of 500 mAh·g^-1 .
文摘OBJECTIVE: To observe the clinical effect of Cidan capsules, a traditional Chinese medicine applied as an antitumor drug for decades, on the treatment of primary hepatocellular carcinoma(HCC). A two-month experiment was carried out. METHODS: A total of 325 patients with primary HCC were randomly divided into 3 groups. The 125 patients in Group A were treated with Cidan capsules exclusively. The 100 patients in Group B were treated with Cidan capsules combined with chemotherapy. And as control group, the 100 patients in Group C were treated by chemotherapy only. The efficacy of Cidan was analyzed by monitoring associated symptoms and liver function tests and measuring the levels of the NK cell, CD3, CD4, CRJ and CD8, alpha fetoprotein(AFP). The evaluation of Cidan's effects on enhancing the patients' life quality was through clinical and pathological observations. RESULTS: The result showed that the steady rate following the standard for evaluation of Kamofsky was over 87.0% in group B, 72.0% in Group A and 57.0% in Group C, respectively. The life quality of the patients treated with Cidan capsules and chemotherapy was improved more obviously than that in Group A and C. The NK cell,CD3, CD4,CRJ and CD8 in Group C were obviously decreased, while those in Group A and Group B were without apparent vacillation. AFP descended markedly in Group A and B, but did not in Group C. CONCLUSION: Cidan capsules combined with chemotherapy had superior curative effects on primary HCC.