Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, ...Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, we present the collection of 1863 burst dynamic spectra of FRB 20201124A measured with the Five-hundred-meter Aperture Spherical radio Telescope(FAST). The current collection, taken from the observation during the FRB active phase from April to June 2021, is the largest burst sample detected for any FRB so far. The standard PSRFITs format is adopted, including dynamic spectra of the burst, and the time information of the dynamic spectra, in addition, mask files help readers to identify the pulse positions are also provided. The dataset is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00076.展开更多
The origin of fast radio bursts(FRBs),the brightest cosmic explosion in radio bands,remains unknown.We introduce here a novel method for a comprehensive analysis of active FRBs’behaviors in the timeenergy domain.Usin...The origin of fast radio bursts(FRBs),the brightest cosmic explosion in radio bands,remains unknown.We introduce here a novel method for a comprehensive analysis of active FRBs’behaviors in the timeenergy domain.Using"Pincus Index"and"Maximum Lyapunov Exponent",we were able to quantify the randomness and chaoticity,respectively,of the bursting events and put FRBs in the context of common transient physical phenomena,such as pulsar,earthquakes,and solar flares.In the bivariate timeenergy domain,repeated FRB bursts’behaviors deviate significantly(more random,less chaotic)from pulsars,earthquakes,and solar flares.The waiting times between FRB bursts and the corresponding energy changes exhibit no correlation and remain unpredictable,suggesting that the emission of FRBs does not exhibit the time and energy clustering observed in seismic events.The pronounced stochasticity may arise from a singular source with high entropy or the combination of diverse emission mechanisms/sites.Consequently,our methodology serves as a pragmatic tool for illustrating the congruities and distinctions among diverse physical processes.展开更多
基金supported by the National SKA Program of China (Grant Nos. 2020SKA0120100 and 2020SKA0120200)the National Natural Science Foundation of China (Grant Nos. 12041304, 11873067, 11988101, 12041303, 11725313, 11725314, 11833003, 12003028, 12041306, 12103089, U2031209, U2038105, and U1831207)+8 种基金the National Key Research and Development Program of China (Grant Nos. 2019YFA0405100, 2017YFA0402602, 2018YFA0404204, and 2016YFA0400801)Key Research Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH021)Natural Science Foundation of Jiangsu Province (Grant No. BK20211000)Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS, the Strategic Priority Research Program on Space Science, the Western Light Youth Project of Chinese Academy of Sciences (Grant Nos. XDA15360000, XDA15052700, and XDB23040400)funding from the MaxPlanck Partner Group, the science research grants from the China Manned Space Project (Grant Nos. CMS-CSST2021-B11 and CMS-CSST-2021-A11)PKU development (Grant No. 7101502590)support from the XPLORER PRIZEsupported by Fundamental Research Funds for the Central Universities (Grant No. 14380046)the Program for Innovative Talents, Entrepreneur in Jiangsu。
文摘Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, we present the collection of 1863 burst dynamic spectra of FRB 20201124A measured with the Five-hundred-meter Aperture Spherical radio Telescope(FAST). The current collection, taken from the observation during the FRB active phase from April to June 2021, is the largest burst sample detected for any FRB so far. The standard PSRFITs format is adopted, including dynamic spectra of the burst, and the time information of the dynamic spectra, in addition, mask files help readers to identify the pulse positions are also provided. The dataset is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00076.
基金supported by the Open Project Program of the Key Laboratory of FAST,Chinese Academy of Sciencessupported by the National Natural Science Foundation of China(NSFC)(11988101,11725313,11690024,and12203045)+11 种基金the Key Research Project of Zhejiang Lab(2021PE0AC03)supported by NSFC(fU2031117)the Youth Innovation Promotion Association CAS(ID.2021055)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupported by NSFC(12203069)the National SKA Program of China(2022SKA0130100)the Office Leading Group for Cyberspace Affairs,CAS(CAS-WX2023PY-0102)funded by the Australian Governmentsupported by the National Science Foundation of Xinjiang Uygur Autonomous Region(2022D01D85)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(2022A03013-2)the Tianchi Talent projectthe CAS Project for Young Scientists in Basic Research(YSBR-063)。
文摘The origin of fast radio bursts(FRBs),the brightest cosmic explosion in radio bands,remains unknown.We introduce here a novel method for a comprehensive analysis of active FRBs’behaviors in the timeenergy domain.Using"Pincus Index"and"Maximum Lyapunov Exponent",we were able to quantify the randomness and chaoticity,respectively,of the bursting events and put FRBs in the context of common transient physical phenomena,such as pulsar,earthquakes,and solar flares.In the bivariate timeenergy domain,repeated FRB bursts’behaviors deviate significantly(more random,less chaotic)from pulsars,earthquakes,and solar flares.The waiting times between FRB bursts and the corresponding energy changes exhibit no correlation and remain unpredictable,suggesting that the emission of FRBs does not exhibit the time and energy clustering observed in seismic events.The pronounced stochasticity may arise from a singular source with high entropy or the combination of diverse emission mechanisms/sites.Consequently,our methodology serves as a pragmatic tool for illustrating the congruities and distinctions among diverse physical processes.