In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The firs...In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.展开更多
基金supported in part by theNSFC(11871037)Shandong Province(JQ201202)+3 种基金NSFC-RS(11661130148NA150344)111 Project(B12023)supported by the Qingdao Postdoctoral Application Research Project(QDBSH20220202092)。
文摘In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.