This study determines if there is a correlation between rising carbon dioxide levels and global warming. Historical data were reviewed from three different time periods spanning 500 million years. It showed that the c...This study determines if there is a correlation between rising carbon dioxide levels and global warming. Historical data were reviewed from three different time periods spanning 500 million years. It showed that the curves and trends were too dissimilar to establish a connection. Observations from CO<sub>2</sub>/temp ratios showed that the CO<sub>2</sub> and the temperature moved in opposite directions 42% of the time. Many ratios displayed zero or near zero values, reflecting a lack of response. As much as 87% of the ratios revealed negative or near zero values, which strongly negate a correlation. The infrared spectra showed the Greenhouse Gases had an exceptionally low absorption band between 11.67 μm to 9.1 μm, which is a zone called the infrared atmospheric window. Most of the Greenhouse Gases absorb little infrared inside that zone. And that zone is where the Earth’s surface emits almost all infrared radiation. Even with minimal absorbance, water vapor captures the most infrared radiation. It absorbs 84 times more than CO<sub>2</sub>, 407 thousand times more than methane, 452 thousand times more than ozone and 2.3 million times more than nitrous oxide. The Intergovernmental Panel on Climate Change (IPCC) and the United States EPA excluded water vapor because it was not associated with man-made activities. They reported that water vapor and clouds were simply feedback mechanisms from CO<sub>2</sub>. Clouds reflect radiation from the sun. The Northern Hemisphere is 2.7°F warmer than the Southern Hemisphere because of clouds. The world cloud cover has gone down 4.1% from 1982 to 2018. Calculations show that this could be responsible for 2.4°F of the 2.7°F. The research shows that most of the recent increase in temperature (89.9%) is because of fewer clouds.展开更多
In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model...In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably.展开更多
Carbon dioxide rise, swing and spread (seasonal fluctuations) are addressed in this study. Actual CO<sub>2</sub> concentrations were used rather than dry values. The dry values are artificially higher beca...Carbon dioxide rise, swing and spread (seasonal fluctuations) are addressed in this study. Actual CO<sub>2</sub> concentrations were used rather than dry values. The dry values are artificially higher because water vapor must be removed in order for the NDIR instrument to work and is not factored back into the reported numbers. Articles addressing these observations express opinions that are divergent and often conflicting. This investigation resolves many of those inconsistencies. The data were obtained from many measuring stations at various latitudes since 1972 and then graphical compared to changes in sea temperatures, fossil fuel emissions, humidity, and seasonal ice and snow changes. In analyzing the data, various parameters were addressed including: variability, R squared curve values, correlations between curves, residence times, absorption percentages, and Troposphere effects. Mass balance calculations were also made to corroborate viability. The CO<sub>2</sub> “rise” over a 33-year period from a slight ocean temperature increase (0.7°F) contributed 2.3 percent of the total rise while fossil fuel emissions contributed 1.5 percent. The overwhelming majority (60 ppmv, 96%+) was caused by other factors including ocean and land biology as well potential errors in fundamental hypotheses. With respect to “spread” (seasonal CO<sub>2</sub> fluctuations) at the Polar Circles, graphical analysis with high correlations supported by mass balance calculations confirm that ice and snow are the primary cause and explain why the concentrations are the highest at these cold locations. The global variations in “swing” remain uncertain.展开更多
文摘This study determines if there is a correlation between rising carbon dioxide levels and global warming. Historical data were reviewed from three different time periods spanning 500 million years. It showed that the curves and trends were too dissimilar to establish a connection. Observations from CO<sub>2</sub>/temp ratios showed that the CO<sub>2</sub> and the temperature moved in opposite directions 42% of the time. Many ratios displayed zero or near zero values, reflecting a lack of response. As much as 87% of the ratios revealed negative or near zero values, which strongly negate a correlation. The infrared spectra showed the Greenhouse Gases had an exceptionally low absorption band between 11.67 μm to 9.1 μm, which is a zone called the infrared atmospheric window. Most of the Greenhouse Gases absorb little infrared inside that zone. And that zone is where the Earth’s surface emits almost all infrared radiation. Even with minimal absorbance, water vapor captures the most infrared radiation. It absorbs 84 times more than CO<sub>2</sub>, 407 thousand times more than methane, 452 thousand times more than ozone and 2.3 million times more than nitrous oxide. The Intergovernmental Panel on Climate Change (IPCC) and the United States EPA excluded water vapor because it was not associated with man-made activities. They reported that water vapor and clouds were simply feedback mechanisms from CO<sub>2</sub>. Clouds reflect radiation from the sun. The Northern Hemisphere is 2.7°F warmer than the Southern Hemisphere because of clouds. The world cloud cover has gone down 4.1% from 1982 to 2018. Calculations show that this could be responsible for 2.4°F of the 2.7°F. The research shows that most of the recent increase in temperature (89.9%) is because of fewer clouds.
文摘In 1995, the Intergovernmental Panel on Climate Change (IPCC) released a thermodynamic model based on the Greenhouse Effect, aiming to forecast global temperatures. This study delves into the intricacies of that model. Some interesting observations are revealed. The IPCC model equated average temperatures with average energy fluxes, which can cause significant errors. The model assumed that all energy fluxes remained constant, and the Earth emitted infrared radiation as if it were a blackbody. Neither of those conditions exists. The IPCC’s definition of Climate Change only includes events caused by human actions, excluding most causes. Satellite data aimed at the tops of clouds may have inferred a high Greenhouse Gas absorption flux. The model showed more energy coming from the atmosphere than absorbed from the sun, which may have caused a violation of the First and Second Laws of Thermodynamics. There were unexpectedly large gaps in the satellite data that aligned with various absorption bands of Greenhouse Gases, possibly caused by photon scattering associated with re-emissions. Based on science, we developed a cloud-based climate model that complied with the Radiation Laws and the First and Second Laws of Thermodynamics. The Cloud Model showed that 81.3% of the outgoing reflected and infrared radiation was applicable to the clouds and water vapor. In comparison, the involvement of CO<sub>2</sub> was only 0.04%, making it too minuscule to measure reliably.
文摘Carbon dioxide rise, swing and spread (seasonal fluctuations) are addressed in this study. Actual CO<sub>2</sub> concentrations were used rather than dry values. The dry values are artificially higher because water vapor must be removed in order for the NDIR instrument to work and is not factored back into the reported numbers. Articles addressing these observations express opinions that are divergent and often conflicting. This investigation resolves many of those inconsistencies. The data were obtained from many measuring stations at various latitudes since 1972 and then graphical compared to changes in sea temperatures, fossil fuel emissions, humidity, and seasonal ice and snow changes. In analyzing the data, various parameters were addressed including: variability, R squared curve values, correlations between curves, residence times, absorption percentages, and Troposphere effects. Mass balance calculations were also made to corroborate viability. The CO<sub>2</sub> “rise” over a 33-year period from a slight ocean temperature increase (0.7°F) contributed 2.3 percent of the total rise while fossil fuel emissions contributed 1.5 percent. The overwhelming majority (60 ppmv, 96%+) was caused by other factors including ocean and land biology as well potential errors in fundamental hypotheses. With respect to “spread” (seasonal CO<sub>2</sub> fluctuations) at the Polar Circles, graphical analysis with high correlations supported by mass balance calculations confirm that ice and snow are the primary cause and explain why the concentrations are the highest at these cold locations. The global variations in “swing” remain uncertain.