期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于层次聚类的虚假用户检测
被引量:
2
1
作者
方勇
刘道胜
黄诚
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2017年第6期620-624,共5页
互联网上充斥着大量恶意用户,而互联网服务提供商通常有海量的注册用户,使得系统难以从中发现虚假账户。针对海量注册数据中,恶意用户批量注册的虚假账户通常具有相似性的特点。该文提出海量数据中定位虚假账户的系统模型,利用用户名字...
互联网上充斥着大量恶意用户,而互联网服务提供商通常有海量的注册用户,使得系统难以从中发现虚假账户。针对海量注册数据中,恶意用户批量注册的虚假账户通常具有相似性的特点。该文提出海量数据中定位虚假账户的系统模型,利用用户名字符串组成模式对海量数据进行预分类,进而对每个分类中元素计算字符串相似度,即计算字符串Levenshtein距离。设置合适的阈值,进行层次聚类分析,从而定位藏匿在海量注册数据中的成组的虚假账户。实验结果表明:该系统模型有效,与现有的模型相比,该系统对数据维度、数据特性依赖较小。
展开更多
关键词
数据安全
虚假账户
机器学习
层次聚类
原文传递
题名
基于层次聚类的虚假用户检测
被引量:
2
1
作者
方勇
刘道胜
黄诚
机构
四川大学电子信息学院
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2017年第6期620-624,共5页
文摘
互联网上充斥着大量恶意用户,而互联网服务提供商通常有海量的注册用户,使得系统难以从中发现虚假账户。针对海量注册数据中,恶意用户批量注册的虚假账户通常具有相似性的特点。该文提出海量数据中定位虚假账户的系统模型,利用用户名字符串组成模式对海量数据进行预分类,进而对每个分类中元素计算字符串相似度,即计算字符串Levenshtein距离。设置合适的阈值,进行层次聚类分析,从而定位藏匿在海量注册数据中的成组的虚假账户。实验结果表明:该系统模型有效,与现有的模型相比,该系统对数据维度、数据特性依赖较小。
关键词
数据安全
虚假账户
机器学习
层次聚类
Keywords
data security
fake accounts
machine learning
hierarchical clustering
分类号
TP309.2 [自动化与计算机技术—计算机系统结构]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于层次聚类的虚假用户检测
方勇
刘道胜
黄诚
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2017
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部