The interfacial solar evaporator is a key technology for eco-friendly desalination,playing a crucial role in alleviating the global water scarcity crisis.However,limitation of photothermal water evaporation efficiency...The interfacial solar evaporator is a key technology for eco-friendly desalination,playing a crucial role in alleviating the global water scarcity crisis.However,limitation of photothermal water evaporation efficiency persists due to inadequate water transfer at the water-steam interface.Herein,we present a new type of scalable and recyclable arch bridge photothermal fabric with efficient warp-direction water paths by a convenient shuttle-flying weaving technique.Compared to the previous overall layer-by-layer assembled fabric,our photothermal fabric precisely constructed effective water paths and achieved excellent water-heat distribution at the solar evaporation interface,which greatly improved the photothermal conversion efficiency and evaporation rate.By the design of the weaving process,the photothermal fabric shows a new interface contact mode of the water path fiber and polyaniline photothermal fiber.Besides,the arch-bridge type design not only minimizes heat loss area but also enhances the water evaporation area,resulting in high-efficiency all-weather available solar water evaporation.Furthermore,the results show that the temperature,evaporation rate and solar-vapor conversion efficiency of photothermal fabric can reach above 123℃,2.31 kg m^(-2)h^(-1)and 99.93%under a solar illumination of 1 kW m^(-2).The arch-bridge photo-thermal fabric with an excellent water evaporation rate has been successfully established,which provides a new paradigm for improving the sustainable seawater desalination rate.展开更多
A novel melting infiltration by ultrasonic vibration was investigated and applied to fabricate Ti6Al4V(TC4)lattice structure-reinforced Mg-10Gd-2Y-1Zn-xZr(refer to VW92 hereafter,x=0,0.5 wt%)alloy matrix composites.Th...A novel melting infiltration by ultrasonic vibration was investigated and applied to fabricate Ti6Al4V(TC4)lattice structure-reinforced Mg-10Gd-2Y-1Zn-xZr(refer to VW92 hereafter,x=0,0.5 wt%)alloy matrix composites.The edge-to-edge matching model indicates that the well-matching and possible orientation relationships(ORs)between theα-Mg andα-Ti,[10-10]_(α-Mg)//[11-23]_(α-Ti) in(0002)_(α-Mg)//(10-10)_(α-Ti) possesses the smallest misfit of 0.4%(f_(r)),and thus theα-Mg grains can nucleate on the TC4 lattice structure.Interfacial reaction occurred in the TC4/VW92+0.5 wt%Zr composites,and the reaction product was confirmed to be Al_(2)Zr_(3),AlZr_(2) andα-Ti(Zr)particles formed by continuous solution of Zr-Ti.Among the interfacial products,the AlZr_(2) phase is a brittle phase with high-volume fraction,which is not conducive to the load transfer.But generally speaking,theα-Ti(Zr)and theα-Mg tend to form a coherent interface,which is beneficial for improving the interfacial bonding strength of composites.展开更多
The catalytic performances over propylene epoxidation with H_(2)and O_(2)(HOPO process)are significantly affected by the properties(e.g.,surface properties,Ti coordination,morphology)of titanosilicate zeolite.Introduc...The catalytic performances over propylene epoxidation with H_(2)and O_(2)(HOPO process)are significantly affected by the properties(e.g.,surface properties,Ti coordination,morphology)of titanosilicate zeolite.Introducing urea into zeolite synthesis is a simple and convenient method to modify these properties of titanosilicate zeolite.Uncalcined pore-blocked titanium silicalite-1(TS-1,i.e.,TS-1-B)with the lower urea dosage possesses more defective structure and unsaturated coordinated Ti sites verified by 29Si nuclear magnetic resonance(NMR)and X-ray photoelectron spectroscopy(XPS)analysis,which results in a high initial activity and hydrogen efficiency;while the high surface acidity generated by these Ti species leads to a continuous decrease in the activity and the propylene oxide(PO)selectivity during the reaction.As the amount of urea gradually increases,the TS-1-B samples present the reduced surface defects and defective and unsaturated Ti species.Specially,TS-1-B-0.30U presents the weaker PO adsorption on PO-diffusion reflectance infrared Fourier transform spectra(DRIFTS),thus results in the high stable PO formation rate and selectivity over its Au catalyst.Furthermore,a flat-plate-like shape with a shorter thickness of 100 nm along the b-axis direction is observed on the urea-modified TS-1.Compared with the conventional ellipsoidal TS-1 with crystal sizes of 200 and 500 nm,the flat-plate-like TS-1-0.30U displays the less surface defects,unsaturated Ti species,the weaker Lewis acid,which is favorable for the desorption and intracrystalline diffusion of PO,thus reduces the occurrence of side reactions for the improved selectivity and stability.This work may provide a reference for developing titanium-containing materials with high activity and stability over HOPO reaction.展开更多
Traditional named entity recognition methods need professional domain knowl-edge and a large amount of human participation to extract features,as well as the Chinese named entity recognition method based on a neural n...Traditional named entity recognition methods need professional domain knowl-edge and a large amount of human participation to extract features,as well as the Chinese named entity recognition method based on a neural network model,which brings the prob-lem that vector representation is too singular in the process of character vector representa-tion.To solve the above problem,we propose a Chinese named entity recognition method based on the BERT-BiLSTM-ATT-CRF model.Firstly,we use the bidirectional encoder representations from transformers(BERT)pre-training language model to obtain the se-mantic vector of the word according to the context information of the word;Secondly,the word vectors trained by BERT are input into the bidirectional long-term and short-term memory network embedded with attention mechanism(BiLSTM-ATT)to capture the most important semantic information in the sentence;Finally,the conditional random field(CRF)is used to learn the dependence between adjacent tags to obtain the global optimal sentence level tag sequence.The experimental results show that the proposed model achieves state-of-the-art performance on both Microsoft Research Asia(MSRA)corpus and people’s daily corpus,with F1 values of 94.77% and 95.97% respectively.展开更多
This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay c...This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay cables used in Sutong Bridge,Baosteel has established three key technologies based on research of manufacture technology and technical innovation.The three key technologies are:"Double Tensioning + limiter die" process,"dominant process + fine adjustment" in integrated optimization technology and "three-level control" in hot dip galvanization.With these key technologies,Baosteel has produced 1 770 MPa galvanized wires for stay cable,which has high tensile strength,low relaxation and good torsion performances.展开更多
1 Introduction and main contributions In clinical surgery and postoperative rehabilitation, various types of wound infections can cause a variety of diseases, leading to further injury and even death of patients, whic...1 Introduction and main contributions In clinical surgery and postoperative rehabilitation, various types of wound infections can cause a variety of diseases, leading to further injury and even death of patients, which has become a common concern among doctors. The use of specific and rational antibiotics for patients is an important way to treat bacterial infections, while avoiding the abuse of antibiotics [1]. Therefore, rapid and reliable detection of infectious bacteria is the key premise of follow-up antibiotic treatment.展开更多
基金supported by the Research Initiated Project of Chengdu University(2081921027)the Key Laboratory of Materials and Surface Technology,Ministry of Education(NO.xxx-2023-yb010)+2 种基金the Bureau of Science&Technology and Intellectual Property Nanchong City(22SXZRKX0017)the North Sichuan Medical College(CBY22-ZDA07,CBY21-QD-04)National Natural Science Foundation of China(52205182).
文摘The interfacial solar evaporator is a key technology for eco-friendly desalination,playing a crucial role in alleviating the global water scarcity crisis.However,limitation of photothermal water evaporation efficiency persists due to inadequate water transfer at the water-steam interface.Herein,we present a new type of scalable and recyclable arch bridge photothermal fabric with efficient warp-direction water paths by a convenient shuttle-flying weaving technique.Compared to the previous overall layer-by-layer assembled fabric,our photothermal fabric precisely constructed effective water paths and achieved excellent water-heat distribution at the solar evaporation interface,which greatly improved the photothermal conversion efficiency and evaporation rate.By the design of the weaving process,the photothermal fabric shows a new interface contact mode of the water path fiber and polyaniline photothermal fiber.Besides,the arch-bridge type design not only minimizes heat loss area but also enhances the water evaporation area,resulting in high-efficiency all-weather available solar water evaporation.Furthermore,the results show that the temperature,evaporation rate and solar-vapor conversion efficiency of photothermal fabric can reach above 123℃,2.31 kg m^(-2)h^(-1)and 99.93%under a solar illumination of 1 kW m^(-2).The arch-bridge photo-thermal fabric with an excellent water evaporation rate has been successfully established,which provides a new paradigm for improving the sustainable seawater desalination rate.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (2020B0301030006)the National Natural Science Foundation of China (52225101)+2 种基金the Scientific Research Foundation of Chongqing University of Technology (2020ZDZ006)the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJZD-K202201108)the University Innovation Research Group of Chongqing (CXQT20023).
文摘A novel melting infiltration by ultrasonic vibration was investigated and applied to fabricate Ti6Al4V(TC4)lattice structure-reinforced Mg-10Gd-2Y-1Zn-xZr(refer to VW92 hereafter,x=0,0.5 wt%)alloy matrix composites.The edge-to-edge matching model indicates that the well-matching and possible orientation relationships(ORs)between theα-Mg andα-Ti,[10-10]_(α-Mg)//[11-23]_(α-Ti) in(0002)_(α-Mg)//(10-10)_(α-Ti) possesses the smallest misfit of 0.4%(f_(r)),and thus theα-Mg grains can nucleate on the TC4 lattice structure.Interfacial reaction occurred in the TC4/VW92+0.5 wt%Zr composites,and the reaction product was confirmed to be Al_(2)Zr_(3),AlZr_(2) andα-Ti(Zr)particles formed by continuous solution of Zr-Ti.Among the interfacial products,the AlZr_(2) phase is a brittle phase with high-volume fraction,which is not conducive to the load transfer.But generally speaking,theα-Ti(Zr)and theα-Mg tend to form a coherent interface,which is beneficial for improving the interfacial bonding strength of composites.
基金the funds from the Research Fund for National Key Research and Development Program of China(No.2021YFA1501403)the National Natural Science Foundation of China(Nos.21922803 and 22038003)+1 种基金Shanghai Rising-Star Program(No.17QA1401200)the Innovation Program of the Shanghai Municipal Education Commission(No.17ZR1407300).
文摘The catalytic performances over propylene epoxidation with H_(2)and O_(2)(HOPO process)are significantly affected by the properties(e.g.,surface properties,Ti coordination,morphology)of titanosilicate zeolite.Introducing urea into zeolite synthesis is a simple and convenient method to modify these properties of titanosilicate zeolite.Uncalcined pore-blocked titanium silicalite-1(TS-1,i.e.,TS-1-B)with the lower urea dosage possesses more defective structure and unsaturated coordinated Ti sites verified by 29Si nuclear magnetic resonance(NMR)and X-ray photoelectron spectroscopy(XPS)analysis,which results in a high initial activity and hydrogen efficiency;while the high surface acidity generated by these Ti species leads to a continuous decrease in the activity and the propylene oxide(PO)selectivity during the reaction.As the amount of urea gradually increases,the TS-1-B samples present the reduced surface defects and defective and unsaturated Ti species.Specially,TS-1-B-0.30U presents the weaker PO adsorption on PO-diffusion reflectance infrared Fourier transform spectra(DRIFTS),thus results in the high stable PO formation rate and selectivity over its Au catalyst.Furthermore,a flat-plate-like shape with a shorter thickness of 100 nm along the b-axis direction is observed on the urea-modified TS-1.Compared with the conventional ellipsoidal TS-1 with crystal sizes of 200 and 500 nm,the flat-plate-like TS-1-0.30U displays the less surface defects,unsaturated Ti species,the weaker Lewis acid,which is favorable for the desorption and intracrystalline diffusion of PO,thus reduces the occurrence of side reactions for the improved selectivity and stability.This work may provide a reference for developing titanium-containing materials with high activity and stability over HOPO reaction.
文摘Traditional named entity recognition methods need professional domain knowl-edge and a large amount of human participation to extract features,as well as the Chinese named entity recognition method based on a neural network model,which brings the prob-lem that vector representation is too singular in the process of character vector representa-tion.To solve the above problem,we propose a Chinese named entity recognition method based on the BERT-BiLSTM-ATT-CRF model.Firstly,we use the bidirectional encoder representations from transformers(BERT)pre-training language model to obtain the se-mantic vector of the word according to the context information of the word;Secondly,the word vectors trained by BERT are input into the bidirectional long-term and short-term memory network embedded with attention mechanism(BiLSTM-ATT)to capture the most important semantic information in the sentence;Finally,the conditional random field(CRF)is used to learn the dependence between adjacent tags to obtain the global optimal sentence level tag sequence.The experimental results show that the proposed model achieves state-of-the-art performance on both Microsoft Research Asia(MSRA)corpus and people’s daily corpus,with F1 values of 94.77% and 95.97% respectively.
基金National Science and Technology Planning Project(No.2006BAG04B02)
文摘This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay cables used in Sutong Bridge,Baosteel has established three key technologies based on research of manufacture technology and technical innovation.The three key technologies are:"Double Tensioning + limiter die" process,"dominant process + fine adjustment" in integrated optimization technology and "three-level control" in hot dip galvanization.With these key technologies,Baosteel has produced 1 770 MPa galvanized wires for stay cable,which has high tensile strength,low relaxation and good torsion performances.
基金the National Natural Science Foundation of China (Grant No. 61672470)the National Key Research and Development Plant (2016YFE0100300 and 2016YFE0100600)the project of the International Cooperation of Henan Province of China (162102410076).
文摘1 Introduction and main contributions In clinical surgery and postoperative rehabilitation, various types of wound infections can cause a variety of diseases, leading to further injury and even death of patients, which has become a common concern among doctors. The use of specific and rational antibiotics for patients is an important way to treat bacterial infections, while avoiding the abuse of antibiotics [1]. Therefore, rapid and reliable detection of infectious bacteria is the key premise of follow-up antibiotic treatment.