The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were...The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.展开更多
A new method was proposed for study of organic reducing substances in soils. According to the theoretical relationship between the voltammetric behaviors and reduction-oxidation reaction of reducing substances, the wo...A new method was proposed for study of organic reducing substances in soils. According to the theoretical relationship between the voltammetric behaviors and reduction-oxidation reaction of reducing substances, the working conditions of differential pulse voltammetry (d.p. v.) for determining the organic reducing substances produced during the processes of the anaerobic decomposition of plant materials were established with a glass carbon electrode as working electrode, 1 M Ag-AgCl electrode with large area as reference electrode, 0.2 M NH4AC as supporting electrolyte and pH buffer solution, pulse amplitude (AE) of 25 mV, scan rate at 2 mV·S-1and scan potential ranging from -0.5 to +1.2 voltage(vs. M Ag-AgCl). The peak current proportional to the concentration of reducing substances, and the characteristic peak potential of each organic reducing substance were regarded as the quantitative and qualitative base, respectively. These results obtained under the conditions mentioned above directly reflect both the reducing intensity and capacity of the organic reducing system in soils.展开更多
文摘The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.
文摘A new method was proposed for study of organic reducing substances in soils. According to the theoretical relationship between the voltammetric behaviors and reduction-oxidation reaction of reducing substances, the working conditions of differential pulse voltammetry (d.p. v.) for determining the organic reducing substances produced during the processes of the anaerobic decomposition of plant materials were established with a glass carbon electrode as working electrode, 1 M Ag-AgCl electrode with large area as reference electrode, 0.2 M NH4AC as supporting electrolyte and pH buffer solution, pulse amplitude (AE) of 25 mV, scan rate at 2 mV·S-1and scan potential ranging from -0.5 to +1.2 voltage(vs. M Ag-AgCl). The peak current proportional to the concentration of reducing substances, and the characteristic peak potential of each organic reducing substance were regarded as the quantitative and qualitative base, respectively. These results obtained under the conditions mentioned above directly reflect both the reducing intensity and capacity of the organic reducing system in soils.