光伏电站由数量庞大的光伏组件构成,因复杂的生产工艺及艰苦的工作环境,光伏系统直流侧故障频发,直接影响到光伏系统的发电效益。如何从光伏阵列的运行数据中提取有效的故障样本,并对其进行识别,是建立故障模型的重要步骤。因此提出一...光伏电站由数量庞大的光伏组件构成,因复杂的生产工艺及艰苦的工作环境,光伏系统直流侧故障频发,直接影响到光伏系统的发电效益。如何从光伏阵列的运行数据中提取有效的故障样本,并对其进行识别,是建立故障模型的重要步骤。因此提出一种基于模糊C均值(fuzzy C-means,FCM)聚类算法对故障样本进行划分及标识的方法。首先对故障条件下光伏阵列的输出特性进行分析,提取出故障特征向量(开路电压Uoc,短路电流Isc,最大工作点电压Um,最大工作点电流Im)。为排除外部激励条件对电气参数的影响,将故障特征向量统一转换至标准测试条件(standard test condition,STC)。最后根据FCM算法良好的模糊信息处理功能,对开路故障、短路故障、阴影故障、异常老化故障的样本进行聚类划分。实际运行数据证明,该方法可以精确、可靠地对光伏系统直流侧典型故障的样本进行智能聚类,并有效地描述不同故障下光伏阵列电气参数的分布特征。展开更多
文摘光伏电站由数量庞大的光伏组件构成,因复杂的生产工艺及艰苦的工作环境,光伏系统直流侧故障频发,直接影响到光伏系统的发电效益。如何从光伏阵列的运行数据中提取有效的故障样本,并对其进行识别,是建立故障模型的重要步骤。因此提出一种基于模糊C均值(fuzzy C-means,FCM)聚类算法对故障样本进行划分及标识的方法。首先对故障条件下光伏阵列的输出特性进行分析,提取出故障特征向量(开路电压Uoc,短路电流Isc,最大工作点电压Um,最大工作点电流Im)。为排除外部激励条件对电气参数的影响,将故障特征向量统一转换至标准测试条件(standard test condition,STC)。最后根据FCM算法良好的模糊信息处理功能,对开路故障、短路故障、阴影故障、异常老化故障的样本进行聚类划分。实际运行数据证明,该方法可以精确、可靠地对光伏系统直流侧典型故障的样本进行智能聚类,并有效地描述不同故障下光伏阵列电气参数的分布特征。
文摘合成了一种含有N,N-二甲基苯胺电子给体的新型联吡啶钌染料Ru[(L)(dcbpy)]NCS2,编号RC-30,并应用于染料敏化太阳电池(DSC)中。使用核磁共振氢谱(1H NMR),基质辅助激光解吸-飞行时间质谱(MALDITOFMS)对新染料的分子结构进行表征,利用紫外可见吸收(UV-Vis)和循环伏安法(CV)对染料的光电化学性质进行表征。将该染料应用在DSC中,RC-30敏化电池的短路电流密度J_(sc)、开路电压V_(oc)、填充因子FF、电池效率η分别为15.5 m A/cm^2、0.710 V、73.9%和8.11%,相对于相同条件下标准染料N3的J_(sc)提高了15.6%、电池效率η提高了10.4%。