Objective:To investigate the association of persistently elevated prostate-specific antigen(PSA)after radical prostatectomy(RP)with clinicopathological features and long-term oncological prognosis for the development ...Objective:To investigate the association of persistently elevated prostate-specific antigen(PSA)after radical prostatectomy(RP)with clinicopathological features and long-term oncological prognosis for the development of a potential management strategy.Methods:A systematic literature search was performed using PubMed and Web of Science up to June 2021 to identify the eligible studies focusing on understanding the impact of persistent PSA in patients who underwent RP for localized prostate cancer.Meta-analyses were performed on parameters with available information.Results:A total of 32 RP studies were identified,of which 11 included 26719 patients with consecutive cohorts and the remaining 21 comprised 24177 patients with cohorts carrying specific restrictions.Of the 11 studies with consecutive cohorts,the incidence of persistent PSA varied between 3.1%and 34.6%with a median of 11.0%.Meta-analyses revealed patients with persistent PSA consistently showed unfavorable clinicopathological features and a more than 3.5-fold risk of poorer biochemical recurrence,metastasis,and prostate cancer-specific mortality prognosis independently,when compared to patients with undetectable PSA.Similarly,cases with persistent PSA in different specific patient cohorts with a higher risk of prostate cancer also showed a trend of worse outcomes.Conclusion:We found that the frequency of persistent PSA was about 11.0%in consecutive RP cohorts.Persistent PSA was significantly associated with unfavorable clinicopathological characteristics and worse oncological outcomes.Patients with persistent PSA after RP may benefit from early salvage treatment to delay or prevent biochemical recurrence,improving oncological outcomes for these patients.Further prospective randomized controlled trials are warranted to understand optimal systemic therapy in these patients.展开更多
Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the m...Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the microstructural features of a Ti-6 Al-4 V alloy manufactured via high power laser directed energy deposition subjected to low-cycle fatigue loading were studied.Before fatigue loading,the microstructure of the as-deposited parts was found to exhibit a non-homogeneous distribution of columnar prior-βgrains(200-4000μm)at various scanning velocities(300-1500 mm/min)and relatively coarseα-laths(1.0-4.5μm).Under cyclic loading,fatigue microcracks typically initiated within the alignedαphases in the preferred orientation(45°to the loading direction)at the surface of the fatigue specimens.Fatigued Ti-6 Al-4 V exhibited a single straight dislocation character at low strain amplitudes(<0.65%)and dislocation dipoles or even tangled dislocations at high strain amplitudes(>1.1%).In addition,dislocation substructure features,such as dislocation walls,stacking faults,and dislocation networks,were also observed.These findings may provide opportunities to understand the fatigue failure mechanism of additive manufactured titanium parts.展开更多
In order to investigate the response of cellular spacing to the variation of growth velocity under near-rapid directional solidification condition, Al-0.53wt%Zn alloy is directionally solidified with Bridgman apparatu...In order to investigate the response of cellular spacing to the variation of growth velocity under near-rapid directional solidification condition, Al-0.53wt%Zn alloy is directionally solidified with Bridgman apparatus. The results show that at the given temperature gradient the obtained microstrvctures are all cells and there exists a wide distribution range of cellular spacing. The maximum, λmax, minimum, λmin, and average cellular spacing, λ, as functions of growth rate, V, can be given by λmax=948.51V-0.4961, λmin= 661.16V-0.5015 and λ=412.41V-0.5049, respectively. The experimental results are compared with that predicted by KGT model, and a good agreement is found. Moreover,it is found that the average cellular spacing is also remarkably history-dependent.展开更多
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
From 2011 to 2014, the BESIII experiment collected about 5 fb^-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon proce...From 2011 to 2014, the BESIII experiment collected about 5 fb^-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- →yma/Fsμ^+μ^-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were prop...In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were proposed to characterize the microstructural evolution with temperature.The as-fabricated AlSilOMg sample presents high tensile strength with the ultimate tensile strength(UTS)of~450 MPa and yield strength(YS)of~300 MPa,which results from the mixed strengthening mechanism among grain boundary,solid solution,dislocation and Orowan looping mechanism.When holding at the temperature below 200℃for 30 min,the micro structure presents little change,and only a slight decrement of yield strength appears due to the relief of the residual stress.However,when the holding temperature further increases to 300℃and 400℃,the coarsening and precipitation of Si particles inα-Al matrix occur obviously,which leads to an obvious decrease of solid solution strength.At the same time,matrix softening and the weakness of dislocation strengthening also play important roles.When the holding temperature reaches to 400℃,the yield strength decreases significantly to about 25 MPa which is very similar to the as-cast Al alloy.This might be concluded that the YS is dominated by the matrix materials.Because the softening mechanism counteracts work hardening,the extremely high elongation occurs.展开更多
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first obser...Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).展开更多
We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected ...We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.展开更多
Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),th...Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.展开更多
Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branch...Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.展开更多
Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalcul...Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.展开更多
The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonan...The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.展开更多
The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhab...The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.展开更多
From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.Th...From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.展开更多
In present work,a novel crack-free Al-Cu-Mg-Si-Ti alloy with synchronous improved tensile properties and hot-cracking resistance was proposed and successfully manufactured by laser powder bed fusion(LPBF).The microstr...In present work,a novel crack-free Al-Cu-Mg-Si-Ti alloy with synchronous improved tensile properties and hot-cracking resistance was proposed and successfully manufactured by laser powder bed fusion(LPBF).The microstructure evolution behaviors and the corresponding strengthening mechanisms were investigated in detail.The LPBF-processed Al-Cu-Mg-Si-Ti alloy presents a heterogeneous microstructure consisting of ultrafine equiaxed grains(UFGs)at the boundary and coarse columnar grains(CGs)at the center of the single molten pool.Pre-precipitated D022-Al 3 Ti particles were found to act as the nuclei to refine the grains at the boundary of the molten pool during solidification process,which is attributed to the low cooling rate providing the sufficient incubation time for the precipitation of D022-Al 3 Ti.There are two orientation relationships(ORs)betweenα-Al and D022-Al 3 Ti,i.e.[001]α-Al//[001]D022-Al3Ti,(200)α-Al//(200)D022-Al3Ti and[1¯1¯2]α-Al//[¯111]D022-Al3Ti,(1¯11)α-Al//(¯11¯2)D022-Al3Ti,which are two of the eight ORs predicted with the E2EM model.Refined grains in present alloy,no matter for UFGs or CG,exhibited high critical hot-cracking stress,which means a strong hot-cracking resistance.Dual-nanoprecipitation of Cu-,Mg-,and Si-rich Q’and S’phases was introduced to enhance the mechanical performance ofα-Al matrix.The as-built sample exhibits superior tensile properties,with the yield strength(YS)of 473±8 MPa,ultimate tensile strength(UTS)of 541±2 MPa and elongation(EI)of 10.9%±1.2%.展开更多
文摘Objective:To investigate the association of persistently elevated prostate-specific antigen(PSA)after radical prostatectomy(RP)with clinicopathological features and long-term oncological prognosis for the development of a potential management strategy.Methods:A systematic literature search was performed using PubMed and Web of Science up to June 2021 to identify the eligible studies focusing on understanding the impact of persistent PSA in patients who underwent RP for localized prostate cancer.Meta-analyses were performed on parameters with available information.Results:A total of 32 RP studies were identified,of which 11 included 26719 patients with consecutive cohorts and the remaining 21 comprised 24177 patients with cohorts carrying specific restrictions.Of the 11 studies with consecutive cohorts,the incidence of persistent PSA varied between 3.1%and 34.6%with a median of 11.0%.Meta-analyses revealed patients with persistent PSA consistently showed unfavorable clinicopathological features and a more than 3.5-fold risk of poorer biochemical recurrence,metastasis,and prostate cancer-specific mortality prognosis independently,when compared to patients with undetectable PSA.Similarly,cases with persistent PSA in different specific patient cohorts with a higher risk of prostate cancer also showed a trend of worse outcomes.Conclusion:We found that the frequency of persistent PSA was about 11.0%in consecutive RP cohorts.Persistent PSA was significantly associated with unfavorable clinicopathological characteristics and worse oncological outcomes.Patients with persistent PSA after RP may benefit from early salvage treatment to delay or prevent biochemical recurrence,improving oncological outcomes for these patients.Further prospective randomized controlled trials are warranted to understand optimal systemic therapy in these patients.
基金supported by the National Key Research and Development Plan of China(2016YFB1100104)National Natural Science Foundation of China(Grant No.51971166)。
文摘Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the microstructural features of a Ti-6 Al-4 V alloy manufactured via high power laser directed energy deposition subjected to low-cycle fatigue loading were studied.Before fatigue loading,the microstructure of the as-deposited parts was found to exhibit a non-homogeneous distribution of columnar prior-βgrains(200-4000μm)at various scanning velocities(300-1500 mm/min)and relatively coarseα-laths(1.0-4.5μm).Under cyclic loading,fatigue microcracks typically initiated within the alignedαphases in the preferred orientation(45°to the loading direction)at the surface of the fatigue specimens.Fatigued Ti-6 Al-4 V exhibited a single straight dislocation character at low strain amplitudes(<0.65%)and dislocation dipoles or even tangled dislocations at high strain amplitudes(>1.1%).In addition,dislocation substructure features,such as dislocation walls,stacking faults,and dislocation networks,were also observed.These findings may provide opportunities to understand the fatigue failure mechanism of additive manufactured titanium parts.
文摘In order to investigate the response of cellular spacing to the variation of growth velocity under near-rapid directional solidification condition, Al-0.53wt%Zn alloy is directionally solidified with Bridgman apparatus. The results show that at the given temperature gradient the obtained microstrvctures are all cells and there exists a wide distribution range of cellular spacing. The maximum, λmax, minimum, λmin, and average cellular spacing, λ, as functions of growth rate, V, can be given by λmax=948.51V-0.4961, λmin= 661.16V-0.5015 and λ=412.41V-0.5049, respectively. The experimental results are compared with that predicted by KGT model, and a good agreement is found. Moreover,it is found that the average cellular spacing is also remarkably history-dependent.
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.
基金Supported by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(11125525,11235011.11322544,11335008,11425524,Y61137005C)+7 种基金Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,CAS Center for Excellence in Particle Physics(CCEPP),Collaborative Innovation Center for Particles and Interactions(CICPI),Joint Large-Scale Scientific Facility Funds of NSFC and CAS(11179007,U1232201,U1332201),CAS(KJCX2-YW-N29,KJCX2-YWN45),100 Talents Program of CASNational 1000 Talents Program of China,INPACShanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG(Collaborative Research Center CRC-1044)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)Russian Foundation for Basic Research(14-07-91152)Swedish Research Council,U.S.Department of Energy(DE-FG02-04ER41291,DE-FG02-05ER41374,DE-FG02-94ER40823,DESC0010118)U.S.National Science Foundation,University of Groningen(RuG)and Helniholtzzentrum fuer Schwerionenforschung GmbH(GSI),DarmstadtWCU Program of National Research Foundation of Korea(R32-2008-000-10155-0)
文摘From 2011 to 2014, the BESIII experiment collected about 5 fb^-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- →yma/Fsμ^+μ^-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported financially by the National Key Research and Development Programme of China(Nos.2016YFB1100602 and 2016YFB1100100)。
文摘In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were proposed to characterize the microstructural evolution with temperature.The as-fabricated AlSilOMg sample presents high tensile strength with the ultimate tensile strength(UTS)of~450 MPa and yield strength(YS)of~300 MPa,which results from the mixed strengthening mechanism among grain boundary,solid solution,dislocation and Orowan looping mechanism.When holding at the temperature below 200℃for 30 min,the micro structure presents little change,and only a slight decrement of yield strength appears due to the relief of the residual stress.However,when the holding temperature further increases to 300℃and 400℃,the coarsening and precipitation of Si particles inα-Al matrix occur obviously,which leads to an obvious decrease of solid solution strength.At the same time,matrix softening and the weakness of dislocation strengthening also play important roles.When the holding temperature reaches to 400℃,the yield strength decreases significantly to about 25 MPa which is very similar to the as-cast Al alloy.This might be concluded that the YS is dominated by the matrix materials.Because the softening mechanism counteracts work hardening,the extremely high elongation occurs.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11975011,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+20 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076STFC)(United Kingdom)Suranaree University of Technology(SUT)Thailand Science Research and Innovation(TSRI)National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374)。
文摘Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).
基金Supported in part by National Key R&D Program of China(Grant Nos.2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(Grant Nos.11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(Grant No.U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(Grant No.758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(Grant No.894790)German Research Foundation DFG(Grant No.443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(Grant No.DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant No.B16F640076)Olle Engkvist Foundation(Grant No.200-0605)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(Grant No.160355)The Royal Society,UK(Grant Nos.DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(Grant No.DE-FG02-05ER41374)。
文摘We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.
基金Supported in part by National Key R&D Program of China under Contracts Nos.Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11975118,11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003,12075252,12192260,12192261,12192262,12192263,12192264,12192265)+19 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(43159800)Collaborative Research Center CRC 1044,FOR 2359,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.
基金supported in part by National Key Research and Development Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC,11975118,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265,12061131003)+18 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources and Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF,160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.
基金Supported in part by National Key R&D Program of China(2020YFA0406300, 2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013,12061131003,12075252)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263, U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800), Collaborative Research Center CRC 1044, FOR 2359, GRK 214Istituto Nazionale di Fisica Nucleare, ItalyMinistry of Development of Turkey under Contract No. DPT2006K-120470National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society, UK(DH140054, DH160214)The Swedish Research CouncilU. S. Department of Energy(DE-FG02-05ER41374, DE-SC-0012069)
文摘Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)under Contracts Nos.(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos.(U1732263,U1832207)CAS Key Research Program of Frontier Sciences under Contract No.(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC under Contract No.(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement No(894790)German Research Foundation DFG under Contracts Nos.(443159800),Collaborative Research Center CRC 1044,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation under Contract No.(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)under Contract No.(2016.0157)The Royal Society,UK under Contracts Nos.(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy under Contracts Nos.(DE-FG02-05ER41374,DE-SC-001206)。
文摘The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.
基金supported by the National Key R&D Program of China(No.2016YFB1100100)the National Natural Sci-ence Foundation of China(No.52005411)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2020-TZ-02).One of the authors,Q.Z.Wang,is grateful for the fi-nancial supports provided by the China Scholarship Council(Grant No.202106290075).
文摘In present work,a novel crack-free Al-Cu-Mg-Si-Ti alloy with synchronous improved tensile properties and hot-cracking resistance was proposed and successfully manufactured by laser powder bed fusion(LPBF).The microstructure evolution behaviors and the corresponding strengthening mechanisms were investigated in detail.The LPBF-processed Al-Cu-Mg-Si-Ti alloy presents a heterogeneous microstructure consisting of ultrafine equiaxed grains(UFGs)at the boundary and coarse columnar grains(CGs)at the center of the single molten pool.Pre-precipitated D022-Al 3 Ti particles were found to act as the nuclei to refine the grains at the boundary of the molten pool during solidification process,which is attributed to the low cooling rate providing the sufficient incubation time for the precipitation of D022-Al 3 Ti.There are two orientation relationships(ORs)betweenα-Al and D022-Al 3 Ti,i.e.[001]α-Al//[001]D022-Al3Ti,(200)α-Al//(200)D022-Al3Ti and[1¯1¯2]α-Al//[¯111]D022-Al3Ti,(1¯11)α-Al//(¯11¯2)D022-Al3Ti,which are two of the eight ORs predicted with the E2EM model.Refined grains in present alloy,no matter for UFGs or CG,exhibited high critical hot-cracking stress,which means a strong hot-cracking resistance.Dual-nanoprecipitation of Cu-,Mg-,and Si-rich Q’and S’phases was introduced to enhance the mechanical performance ofα-Al matrix.The as-built sample exhibits superior tensile properties,with the yield strength(YS)of 473±8 MPa,ultimate tensile strength(UTS)of 541±2 MPa and elongation(EI)of 10.9%±1.2%.