The Ce-Co-doped BiFeO3 multiferroic, Bi(1-x)Ce)xFe(1-x)CoxO3(x = 0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, an...The Ce-Co-doped BiFeO3 multiferroic, Bi(1-x)Ce)xFe(1-x)CoxO3(x = 0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, and UV-visible spectroscopy. We have observed an anomalous intensity of the second-order Raman mode at - 1260 cm^-1 in pure BFO and suppressed intensity in doped samples, which indicates the presence of spin two-phonon coupling in these samples.The photoluminescence spectra show reduction in the intensity of emission with the increasing dopant concentration, which indicates the high charge separation efficiency. A sharp absorption with three charge transfer(C-T) and two d-d transitions are shown by UV-visible spectra in the visible region. The band gap of BiFeO3(BFO) is decreasing with increasing dopant concentrations and the materials are suitable for photovoltaic applications.展开更多
We present a study on radiation losses in the microwave X band in Al-Cr substituted Y-type hexaferrites, namely Ba2Mg2Alx/2Crx/2Fe12-xO22 (x = 0, 0.5 and 1.0). The study is performed by means of a vector network ana...We present a study on radiation losses in the microwave X band in Al-Cr substituted Y-type hexaferrites, namely Ba2Mg2Alx/2Crx/2Fe12-xO22 (x = 0, 0.5 and 1.0). The study is performed by means of a vector network analyzer, Fourier transform infrared spectroscopy, a vibrating sample magnetometer and x-ray powder diffraction. Ba2Mg2Fe12O22 hexaferrite shows radiation loss of -37.25dB (99.999% loss) at frequency 9.81 GHz, which can be attributed to its high value of saturation magnetization, i.e., 22.08emu/g. Moreover, we obtain that magnetic properties have strong influence on the radiation losses.展开更多
文摘The Ce-Co-doped BiFeO3 multiferroic, Bi(1-x)Ce)xFe(1-x)CoxO3(x = 0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, and UV-visible spectroscopy. We have observed an anomalous intensity of the second-order Raman mode at - 1260 cm^-1 in pure BFO and suppressed intensity in doped samples, which indicates the presence of spin two-phonon coupling in these samples.The photoluminescence spectra show reduction in the intensity of emission with the increasing dopant concentration, which indicates the high charge separation efficiency. A sharp absorption with three charge transfer(C-T) and two d-d transitions are shown by UV-visible spectra in the visible region. The band gap of BiFeO3(BFO) is decreasing with increasing dopant concentrations and the materials are suitable for photovoltaic applications.
文摘We present a study on radiation losses in the microwave X band in Al-Cr substituted Y-type hexaferrites, namely Ba2Mg2Alx/2Crx/2Fe12-xO22 (x = 0, 0.5 and 1.0). The study is performed by means of a vector network analyzer, Fourier transform infrared spectroscopy, a vibrating sample magnetometer and x-ray powder diffraction. Ba2Mg2Fe12O22 hexaferrite shows radiation loss of -37.25dB (99.999% loss) at frequency 9.81 GHz, which can be attributed to its high value of saturation magnetization, i.e., 22.08emu/g. Moreover, we obtain that magnetic properties have strong influence on the radiation losses.