Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks (MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage contr...Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks (MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage control is currently a very important issue. The voltage is now regulated at the MV busbars acting on the On-Load Tap Changer of the HV/MV transformer. This method does not guarantee the correct voltage value in the network nodes when the distributed generators deliver their power. In this paper an approach based on Sensitivity Theory is shown, in order to control the node voltages regulating the reactive power exchanged between the network and the dispersed generators. The automatic distributed voltage regulation is a particular topic of the Smart Grids.展开更多
The paper deals with the power quality analysis of interlaced four quadrant (4Q) converters with constant switching frequency. These are in fact the input stages of the locomotives and high speed trains supplied by 25...The paper deals with the power quality analysis of interlaced four quadrant (4Q) converters with constant switching frequency. These are in fact the input stages of the locomotives and high speed trains supplied by 25 kV, 50 Hz and 15 kV, 16.7 Hz lines. Due to the high power needed for the trains circulation, the 4Q converter can absorb distorted currents, whose harmonic content can affect the signaling systems and communication devices. The presence of more converters gives the opportunity, using dedicated commutation strategy, to interlace them in order to reduce the harmonic content in the absorbed current. In the paper a suitable model of more 4Q converters is developed. The control logic implemented in the model allows the evaluation of the harmonic contribution of both single converter and the interlaced configuration. The analysis is carried out through electromagnetic transient simulations.展开更多
文摘Due to the development of Distributed Generation (DG), which is installed in Medium-Voltage Distribution Networks (MVDNs) such as generators based on renewable energy (e.g., wind energy or solar energy), voltage control is currently a very important issue. The voltage is now regulated at the MV busbars acting on the On-Load Tap Changer of the HV/MV transformer. This method does not guarantee the correct voltage value in the network nodes when the distributed generators deliver their power. In this paper an approach based on Sensitivity Theory is shown, in order to control the node voltages regulating the reactive power exchanged between the network and the dispersed generators. The automatic distributed voltage regulation is a particular topic of the Smart Grids.
文摘The paper deals with the power quality analysis of interlaced four quadrant (4Q) converters with constant switching frequency. These are in fact the input stages of the locomotives and high speed trains supplied by 25 kV, 50 Hz and 15 kV, 16.7 Hz lines. Due to the high power needed for the trains circulation, the 4Q converter can absorb distorted currents, whose harmonic content can affect the signaling systems and communication devices. The presence of more converters gives the opportunity, using dedicated commutation strategy, to interlace them in order to reduce the harmonic content in the absorbed current. In the paper a suitable model of more 4Q converters is developed. The control logic implemented in the model allows the evaluation of the harmonic contribution of both single converter and the interlaced configuration. The analysis is carried out through electromagnetic transient simulations.