Radiogenic heat production is a physical parameter crucial to properly estimating lithospheric temperatures and properly understanding processes related to the thermal evolution of the Earth. Yet heat production is, i...Radiogenic heat production is a physical parameter crucial to properly estimating lithospheric temperatures and properly understanding processes related to the thermal evolution of the Earth. Yet heat production is, in general, poorly constrained by direct observation because the key radiogenic elements exist in trace amounts making them difficulty image geophysically. In this study, we advance our knowledge of heat production throughout the lithosphere by analyzing chemical analyses of 108,103 igneous rocks provided by a number of geochemical databases. We produce global estimates of the average and natural range for igneous rocks using common chemical classification systems. Heat production increases as a function of increasing felsic and alkali content with similar values for analogous plutonic and volcanic rocks. The logarithm of median heat production is negatively correlated(r^2=0.98)to compositionally-based estimates of seismic velocities between 6.0 and 7.4 km s^(-1), consistent with the vast majority of igneous rock compositions. Compositional variations for continent-wide models are also well-described by a log-linear correlation between heat production and seismic velocity. However, there are differences between the log-linear models for North America and Australia, that are consistent with interpretations from previous studies that suggest above average heat production across much of Australia. Similar log-linear models also perform well within individual geological provinces with^1000 samples. This correlation raises the prospect that this empirical method can be used to estimate average heat production and natural variance both laterally and vertically throughout the lithosphere. This correlative relationship occurs despite a direct causal relationship between these two parameters but probably arises from the process of differentiation through melting and crystallization.展开更多
Autopolyploidy and allopolyploidy may represent an evolutionary advantage and are more common in plants than assumed. However, less attention has been paid to autopolyploidy than to allopolyploidy,and its evolutionary...Autopolyploidy and allopolyploidy may represent an evolutionary advantage and are more common in plants than assumed. However, less attention has been paid to autopolyploidy than to allopolyploidy,and its evolutionary consequences are largely unclear, especially for plants with high ploidy levels. In this study, we developed oligonucleotide(oligo)-based chromosome painting probes to identify individual chromosomes in S. spontaneum. Using fluorescence in situ hybridization(FISH), we investigated chromosome behavior during pachytene, metaphase, anaphase, and telophase of meiosis I(MI) in autotetraploid,autooctoploid, and autodecaploid S. spontaneum clones. All autopolyploid clones showed stable diploidized chromosome behavior;so that homologous chromosomes formed almost exclusively bivalents during MI. Two copies of homologous chromosome 8 with similar sizes in the autotetraploid clone showed preferential pairing with each other with respect to the other copies. However, sequence variation analysis showed no apparent differences among homologs of chromosome 8 and all other chromosomes. We suggest that either the stable diploidized pairing or the preferential pairing between homologous copies of chromosome 8 in the studied autopolyploid sugarcane are accounted for by unknown mechanisms other than DNA sequence similarity. Our results reveal evolutionary consequences of stable meiotic behavior in autopolyploid plants.展开更多
Sedimentary rocks cover-73% of the Earth's surface and metamorphic rocks account for approximately91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock ty...Sedimentary rocks cover-73% of the Earth's surface and metamorphic rocks account for approximately91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock types are vitally important for developing accurate models of lithospheric temperature. We analyze the heat production of ~204,000 whole rock geochemical data to quantify how heat production of these rocks varies with respect to chemistry and their evolution during metamorphism. The heat production of metaigneous and metasedimentary rocks are similar to their respective protoliths. Igneous and metaigneous samples increase in heat production with increasing SiO_2 and K_2 O, but decrease with increasing FeO, MgO and CaO. Sedimentary and metasedimentary rocks increase in heat production with increasing Al_2 O_3, FeO, TiO_2, and K_2 O but decrease with increasing CaO. For both igneous and sedimentary rocks, the heat production variations are largely correlated with processes that affect K_2 O concentration and covary with other major oxides as a consequence. Among sedimentary rocks,aluminous shales are the highest heat producing(2.9 μW^(-3)) whereas more common iron shales are lower heat producing(1.7 μW m^(-3)). Pure quartzites and carbonates are the lowest heat producing sedimentary rocks. Globally, there is little definitive evidence for a decrease in heat production with increasing metamorphic grade. However, there remains the need for high resolution studies of heat production variations within individual protoliths that vary in metamorphic grade. These results improve estimates of heat production and natural variability of rocks that will allow for more accurate temperature models of the lithosphere.展开更多
基金supported by a University of Adelaide summer research scholarship as part of this work
文摘Radiogenic heat production is a physical parameter crucial to properly estimating lithospheric temperatures and properly understanding processes related to the thermal evolution of the Earth. Yet heat production is, in general, poorly constrained by direct observation because the key radiogenic elements exist in trace amounts making them difficulty image geophysically. In this study, we advance our knowledge of heat production throughout the lithosphere by analyzing chemical analyses of 108,103 igneous rocks provided by a number of geochemical databases. We produce global estimates of the average and natural range for igneous rocks using common chemical classification systems. Heat production increases as a function of increasing felsic and alkali content with similar values for analogous plutonic and volcanic rocks. The logarithm of median heat production is negatively correlated(r^2=0.98)to compositionally-based estimates of seismic velocities between 6.0 and 7.4 km s^(-1), consistent with the vast majority of igneous rock compositions. Compositional variations for continent-wide models are also well-described by a log-linear correlation between heat production and seismic velocity. However, there are differences between the log-linear models for North America and Australia, that are consistent with interpretations from previous studies that suggest above average heat production across much of Australia. Similar log-linear models also perform well within individual geological provinces with^1000 samples. This correlation raises the prospect that this empirical method can be used to estimate average heat production and natural variance both laterally and vertically throughout the lithosphere. This correlative relationship occurs despite a direct causal relationship between these two parameters but probably arises from the process of differentiation through melting and crystallization.
基金funded by the Startup Foundation from Nantong University (03083074)partially supported by the National Natural Science Foundation of China (31771862)+1 种基金Special Funds for Technology Innovation of Fujian Agriculture and Forestry University(KFA20001A)the Research Program of Guangxi Key Laboratory for Sugarcane Biology (GXKLSCB-20190203)。
文摘Autopolyploidy and allopolyploidy may represent an evolutionary advantage and are more common in plants than assumed. However, less attention has been paid to autopolyploidy than to allopolyploidy,and its evolutionary consequences are largely unclear, especially for plants with high ploidy levels. In this study, we developed oligonucleotide(oligo)-based chromosome painting probes to identify individual chromosomes in S. spontaneum. Using fluorescence in situ hybridization(FISH), we investigated chromosome behavior during pachytene, metaphase, anaphase, and telophase of meiosis I(MI) in autotetraploid,autooctoploid, and autodecaploid S. spontaneum clones. All autopolyploid clones showed stable diploidized chromosome behavior;so that homologous chromosomes formed almost exclusively bivalents during MI. Two copies of homologous chromosome 8 with similar sizes in the autotetraploid clone showed preferential pairing with each other with respect to the other copies. However, sequence variation analysis showed no apparent differences among homologs of chromosome 8 and all other chromosomes. We suggest that either the stable diploidized pairing or the preferential pairing between homologous copies of chromosome 8 in the studied autopolyploid sugarcane are accounted for by unknown mechanisms other than DNA sequence similarity. Our results reveal evolutionary consequences of stable meiotic behavior in autopolyploid plants.
基金supported by Australian Government Research Training Program Scholarship
文摘Sedimentary rocks cover-73% of the Earth's surface and metamorphic rocks account for approximately91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock types are vitally important for developing accurate models of lithospheric temperature. We analyze the heat production of ~204,000 whole rock geochemical data to quantify how heat production of these rocks varies with respect to chemistry and their evolution during metamorphism. The heat production of metaigneous and metasedimentary rocks are similar to their respective protoliths. Igneous and metaigneous samples increase in heat production with increasing SiO_2 and K_2 O, but decrease with increasing FeO, MgO and CaO. Sedimentary and metasedimentary rocks increase in heat production with increasing Al_2 O_3, FeO, TiO_2, and K_2 O but decrease with increasing CaO. For both igneous and sedimentary rocks, the heat production variations are largely correlated with processes that affect K_2 O concentration and covary with other major oxides as a consequence. Among sedimentary rocks,aluminous shales are the highest heat producing(2.9 μW^(-3)) whereas more common iron shales are lower heat producing(1.7 μW m^(-3)). Pure quartzites and carbonates are the lowest heat producing sedimentary rocks. Globally, there is little definitive evidence for a decrease in heat production with increasing metamorphic grade. However, there remains the need for high resolution studies of heat production variations within individual protoliths that vary in metamorphic grade. These results improve estimates of heat production and natural variability of rocks that will allow for more accurate temperature models of the lithosphere.