Glacial lake outburst floods(GLOFs) are a major concern in the Himalaya and on the Tibetan Plateau(TP),where several disasters occurring over the past century have caused significant loss of life and damage to infrast...Glacial lake outburst floods(GLOFs) are a major concern in the Himalaya and on the Tibetan Plateau(TP),where several disasters occurring over the past century have caused significant loss of life and damage to infrastructure. This study responds directly to the needs of local authorities to provide guidance on the most dangerous glacial lakes across TP where local monitoring and other risk reduction strategies can subsequently be targeted. Specifically, the study aims to establish a first comprehensive prioritisation ranking of lake danger for TP, considering both the likelihood and possible magnitude of any outburst event(hazard), and the exposure of downstream communities. A composite inventory of 1,291 glacial lakes(>0.1 km^2) was derived from recent remote sensing studies, and a fully automated and object assessment scheme was implemented using customised GIS tools. Based on four core determinates of GLOF hazard(lake size, watershed area, topographic potential for ice/rock avalanching, and dam steepness), the scheme accurately distinguishes the high to very high hazard level of 19 out of 20 lakes that have previously generated GLOFs. Notably, 16% of all glacial lakes threaten human settlements, with a hotspot of GLOF danger identified in the central Himalayan counties of Jilong, Nyalam, and Dingri, where the potential trans-boundary threat to communities located downstream in Nepal is also recognised. The results provide an important and object scientific basis for decision-making, and the methodological approach is ideally suited for replication across other mountainous regions where such first-order studies are lacking.展开更多
Rice (Oryza safiva L.) is highly susceptible to the rhizosphere salinity than other cereals. High sensitivity has been ob- served, mainly at vegetative and reproductive stages in rice. It is the duty of plant physio...Rice (Oryza safiva L.) is highly susceptible to the rhizosphere salinity than other cereals. High sensitivity has been ob- served, mainly at vegetative and reproductive stages in rice. It is the duty of plant physiologists to comprehend the growth, development, and physiological processes of rice plants under stress. This paper includes the overview of rice growth and developmental processes influenced by salt stress and the regulation pathways involved in these processes. It also includes the promising salt tolerance strategies, i.e., genetic modification techniques, agronomic practices to improve rice growth, yield; and role of phytohormones and their management, especially inhibition of ethylene biosynthesis by using inhibitors 1-methylcyclopropene (1-MCP). Rice cultivation may be a first choice for improvement of salt tolerance through plant growth regulators and improved cultivation techniques. This study will significantly improve the understanding toward low rice grain yield and poor rice resistance under salt stress and will also stream scientific knowledge for effective utilization of salt affected soils by using different regulating ways.展开更多
Although bone morphogenetic proteins(BMPs)initially showed effective induction of ectopic bone growth in muscle,it has since been determined that these proteins,as members of the TGF-b superfamily,play a diverse and c...Although bone morphogenetic proteins(BMPs)initially showed effective induction of ectopic bone growth in muscle,it has since been determined that these proteins,as members of the TGF-b superfamily,play a diverse and critical array of biological roles.These roles include regulating skeletal and bone formation,angiogenesis,and development and homeostasis of multiple organ systems.Disruptions of the members of the TGF-b/BMP superfamily result in severe skeletal and extra-skeletal irregularities,suggesting high therapeutic potential from understanding this family of BMP proteins.Although it was once one of the least characterized BMPs,BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo,with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs.The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants,revealing the great translational promise of BMP9.Furthermore,emerging evidence indicates that,besides its osteogenic activity,BMP9 exerts a broad range of biological functions,including stem cell differentiation,angiogenesis,neurogenesis,tumorigenesis,and metabolism.This review aims to summarize our current understanding of BMP9 across biology and the body.展开更多
基金supported by the Swiss National Science Foundation (IZLCZ2_169979/1)counterpart grant of the National Natural Science Foundation of China (21661132003)+1 种基金support of the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA20060201)collaboration within the Dragon 4 project funded by the European Space Agency (4000121469/17/I-NB)
文摘Glacial lake outburst floods(GLOFs) are a major concern in the Himalaya and on the Tibetan Plateau(TP),where several disasters occurring over the past century have caused significant loss of life and damage to infrastructure. This study responds directly to the needs of local authorities to provide guidance on the most dangerous glacial lakes across TP where local monitoring and other risk reduction strategies can subsequently be targeted. Specifically, the study aims to establish a first comprehensive prioritisation ranking of lake danger for TP, considering both the likelihood and possible magnitude of any outburst event(hazard), and the exposure of downstream communities. A composite inventory of 1,291 glacial lakes(>0.1 km^2) was derived from recent remote sensing studies, and a fully automated and object assessment scheme was implemented using customised GIS tools. Based on four core determinates of GLOF hazard(lake size, watershed area, topographic potential for ice/rock avalanching, and dam steepness), the scheme accurately distinguishes the high to very high hazard level of 19 out of 20 lakes that have previously generated GLOFs. Notably, 16% of all glacial lakes threaten human settlements, with a hotspot of GLOF danger identified in the central Himalayan counties of Jilong, Nyalam, and Dingri, where the potential trans-boundary threat to communities located downstream in Nepal is also recognised. The results provide an important and object scientific basis for decision-making, and the methodological approach is ideally suited for replication across other mountainous regions where such first-order studies are lacking.
基金supported by the Natural Science Foundation of Zhejiang Province,China(LY13C130007)the National Key Research and Development Program of China(2016YFD0200801)the Basic Research Foundation of National Commonweal Research Institute,China(2014RG004-5)
文摘Rice (Oryza safiva L.) is highly susceptible to the rhizosphere salinity than other cereals. High sensitivity has been ob- served, mainly at vegetative and reproductive stages in rice. It is the duty of plant physiologists to comprehend the growth, development, and physiological processes of rice plants under stress. This paper includes the overview of rice growth and developmental processes influenced by salt stress and the regulation pathways involved in these processes. It also includes the promising salt tolerance strategies, i.e., genetic modification techniques, agronomic practices to improve rice growth, yield; and role of phytohormones and their management, especially inhibition of ethylene biosynthesis by using inhibitors 1-methylcyclopropene (1-MCP). Rice cultivation may be a first choice for improvement of salt tolerance through plant growth regulators and improved cultivation techniques. This study will significantly improve the understanding toward low rice grain yield and poor rice resistance under salt stress and will also stream scientific knowledge for effective utilization of salt affected soils by using different regulating ways.
基金The reported work was supported in part by research grants from the National Institutes of Health(CA226303,DE020140 to TCH and RRR)the U.S.Department of Defense(OR130096 to JMW)+5 种基金the Scoliosis Research Society(TCH and MJL)the Scoliosis Research Society(TCH and MJL)the National Key Research and Development Program of China(2016YFC1000803 and 2011CB707906).This project was also supported in part by The University of Chicago Cancer Center Support Grant(P30CA014599)and the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430.SM and MP were supported by the Summer Research Program of The University of Chicago Pritzker School of Medicine.TCH was also supported by the Mabel Green Myers Research Endowment Fund and The University of Chicago Orthopaedic Alumni Fund.Funding sources were not involved in the study designin the collection,analysis and interpretation of datain the writing of the reportand in the decision to submit the paper for publication.
文摘Although bone morphogenetic proteins(BMPs)initially showed effective induction of ectopic bone growth in muscle,it has since been determined that these proteins,as members of the TGF-b superfamily,play a diverse and critical array of biological roles.These roles include regulating skeletal and bone formation,angiogenesis,and development and homeostasis of multiple organ systems.Disruptions of the members of the TGF-b/BMP superfamily result in severe skeletal and extra-skeletal irregularities,suggesting high therapeutic potential from understanding this family of BMP proteins.Although it was once one of the least characterized BMPs,BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo,with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs.The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants,revealing the great translational promise of BMP9.Furthermore,emerging evidence indicates that,besides its osteogenic activity,BMP9 exerts a broad range of biological functions,including stem cell differentiation,angiogenesis,neurogenesis,tumorigenesis,and metabolism.This review aims to summarize our current understanding of BMP9 across biology and the body.