Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parame...Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parameters that do not occur in nature.Recently,the use of coding metamaterials has been suggested for the control of electromagnetic waves through the design of coding sequences using digital elements‘0’and‘1,'which possess opposite phase responses.Here we propose the concept of an anisotropic coding metamaterial in which the coding behaviors in different directions are dependent on the polarization status of the electromagnetic waves.We experimentally demonstrate an ultrathin and flexible polarization-controlled anisotropic coding metasurface that functions in the terahertz regime using specially designed coding elements.By encoding the elements with elaborately designed coding sequences(both 1-bit and 2-bit sequences),the x-and y-polarized waves can be anomalously reflected or independently diffused in three dimensions.The simulated far-field scattering patterns and near-field distributions are presented to illustrate the dual-functional performance of the encoded metasurface,and the results are consistent with the measured results.We further demonstrate the ability of the anisotropic coding metasurfaces to generate a beam splitter and realize simultaneous anomalous reflections and polarization conversions,thus providing powerful control of differently polarized electromagnetic waves.The proposed method enables versatile beam behaviors under orthogonal polarizations using a single metasurface and has the potential for use in the development of interesting terahertz devices.展开更多
Calcium sulfates (anhydrite and hydrates) were synthesized by mixing CaCl2 and Na2SO4 solutions at room temperature followed by aging the resulting slurries at elevated temperatures. The variation of the morphology ...Calcium sulfates (anhydrite and hydrates) were synthesized by mixing CaCl2 and Na2SO4 solutions at room temperature followed by aging the resulting slurries at elevated temperatures. The variation of the morphology and structure of the calcium sulfates with aging temperature was investigated. Experimental results indicated that CaSO4.2H20 plates, CaSO4.0.5H2O whiskers and CaSO4 spindles were formed at 〈100℃, 130-160℃ and 〉170℃, respectively. The formation and conversion of the calcium sulfates were discussed on the basis of characterization of the products and chemical analysis of the solutions. Compared to NaCl solution, pure water favors one-dimensional hydrothermal growth of CaSO4.0.BH2O whiskers owing to lower supersaturation.展开更多
Mounting evidence has revealed that the therapeutic efficacy of immunotherapies is restricted to a small portion of cancer patients.A deeper understanding of how metabolic reprogramming in the tumor microenvironment(T...Mounting evidence has revealed that the therapeutic efficacy of immunotherapies is restricted to a small portion of cancer patients.A deeper understanding of how metabolic reprogramming in the tumor microenvironment(TME)regulates immunity remains a major challenge to tumor eradication.It has been suggested that metabolic reprogramming in the TME may affect metabolism in immune cells and subsequently suppress immune function.Tumor cells compete with infiltrating immune cells for nutrients and metabolites.Notably,the immunosuppressive TME is characterized by catabolic and anabolic processes that are critical for immune cell function,and elevated inhibitory signals may favor cancer immune evasion.The major energy sources that supply different immune cell subtypes also undergo reprogramming.We herein summarize the metabolic remodeling in tumor cells and different immune cell subtypes and the latest advances underlying the use of metabolic checkpoints in antitumor immunotherapies.In this context,targeting both tumor and immune cell metabolic reprogramming may enhance therapeutic efficacy.展开更多
Traditional reliability evaluation method for corroded pipeline exists the problem of not considering the associated defects.We therefore propose a new calculation method considering the associated defects.In this pap...Traditional reliability evaluation method for corroded pipeline exists the problem of not considering the associated defects.We therefore propose a new calculation method considering the associated defects.In this paper,the traditional and new methods are respectively used to calculate and contrastively analyze the failure probability of corroded pipeline;we then perform the research of residual life prediction for the corroded pipeline,followed by the sensitivity calculation of all random evaluation parameters.And then the Monte Carlo method(MCS)is applied to verify the rationality of the new method.The research results show that:the method considering associated defect is more objective,and truly react corroded pipeline's dynamic reliability changes;obtain new method to predict residual life of corroded pipeline;corrosion depth,radial corrosion rate have a significant impact on reliability of corroded pipeline considering associated defects.The calculation results of the method are more accurate,more time-saving.展开更多
Dye pollution is a common pollutant in wastewater that poses a serious threat to human health.Layered double hydroxide(LDH)is a commonly used adsorbent for dye removal.However,its adsorption efficiency is significantl...Dye pollution is a common pollutant in wastewater that poses a serious threat to human health.Layered double hydroxide(LDH)is a commonly used adsorbent for dye removal.However,its adsorption efficiency is significantly limited by the limited adsorption active sites of the adsorbent.In this paper,a defects-rich MgFe LDH adsorbent for anionic dye wastewater was synthesized by a simple hydrothermal method and alkaline etching.Different analytical techniques,such as XRD,FT-IR,SEM,TEM,XPS,and N2 adsorption-desorption isotherm,were used to verify the chemical composition and surface characteristics of the materials,and the effects of pH,temperature,and contact time on the adsorption effect of methyl orange and the adsorption mechanism were analyzed.Alkaline etching of Al and Zn in the laminate generated defects that expose unsaturated coordination centers and create abundant adsorption sites,which can electrostatically attract and coordinate with dye ions.At 25℃,the adsorption capacity of MgFe LDH with Al etched and MgFe LDH with Zn etched for methyl orange dye reached 1722 mg·g^(-1 ) and 1685 mg·g^(-1 ),respectively,much higher than that of MgFe LDH(544 mg·g^(-1 )).This work provides a promising method for the removal of dye wastewater by adsorption and a new idea for the design and development of high-performance dye wastewater adsorbents.展开更多
基金supported by the National Science Foundation of China(61571117,61522106,61138001,61302018 and 61401089)Natural Science Foundation of the Jiangsu Province(BK2012019)the 111 Project(111-2-05).
文摘Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parameters that do not occur in nature.Recently,the use of coding metamaterials has been suggested for the control of electromagnetic waves through the design of coding sequences using digital elements‘0’and‘1,'which possess opposite phase responses.Here we propose the concept of an anisotropic coding metamaterial in which the coding behaviors in different directions are dependent on the polarization status of the electromagnetic waves.We experimentally demonstrate an ultrathin and flexible polarization-controlled anisotropic coding metasurface that functions in the terahertz regime using specially designed coding elements.By encoding the elements with elaborately designed coding sequences(both 1-bit and 2-bit sequences),the x-and y-polarized waves can be anomalously reflected or independently diffused in three dimensions.The simulated far-field scattering patterns and near-field distributions are presented to illustrate the dual-functional performance of the encoded metasurface,and the results are consistent with the measured results.We further demonstrate the ability of the anisotropic coding metasurfaces to generate a beam splitter and realize simultaneous anomalous reflections and polarization conversions,thus providing powerful control of differently polarized electromagnetic waves.The proposed method enables versatile beam behaviors under orthogonal polarizations using a single metasurface and has the potential for use in the development of interesting terahertz devices.
基金supported by the National Natural Science Foundation of China with Grant No. 50874066
文摘Calcium sulfates (anhydrite and hydrates) were synthesized by mixing CaCl2 and Na2SO4 solutions at room temperature followed by aging the resulting slurries at elevated temperatures. The variation of the morphology and structure of the calcium sulfates with aging temperature was investigated. Experimental results indicated that CaSO4.2H20 plates, CaSO4.0.5H2O whiskers and CaSO4 spindles were formed at 〈100℃, 130-160℃ and 〉170℃, respectively. The formation and conversion of the calcium sulfates were discussed on the basis of characterization of the products and chemical analysis of the solutions. Compared to NaCl solution, pure water favors one-dimensional hydrothermal growth of CaSO4.0.BH2O whiskers owing to lower supersaturation.
基金supported by the National Natural Science Foundation of China(81903138,81972776,81803025,81772928,81702907,81772901,81672993,81672683)the Natural Science Foundation of Hunan Province(2019JJ50778,2018SK21210,2018SK21211,2018JJ3704,2018JJ3815)。
文摘Mounting evidence has revealed that the therapeutic efficacy of immunotherapies is restricted to a small portion of cancer patients.A deeper understanding of how metabolic reprogramming in the tumor microenvironment(TME)regulates immunity remains a major challenge to tumor eradication.It has been suggested that metabolic reprogramming in the TME may affect metabolism in immune cells and subsequently suppress immune function.Tumor cells compete with infiltrating immune cells for nutrients and metabolites.Notably,the immunosuppressive TME is characterized by catabolic and anabolic processes that are critical for immune cell function,and elevated inhibitory signals may favor cancer immune evasion.The major energy sources that supply different immune cell subtypes also undergo reprogramming.We herein summarize the metabolic remodeling in tumor cells and different immune cell subtypes and the latest advances underlying the use of metabolic checkpoints in antitumor immunotherapies.In this context,targeting both tumor and immune cell metabolic reprogramming may enhance therapeutic efficacy.
文摘Traditional reliability evaluation method for corroded pipeline exists the problem of not considering the associated defects.We therefore propose a new calculation method considering the associated defects.In this paper,the traditional and new methods are respectively used to calculate and contrastively analyze the failure probability of corroded pipeline;we then perform the research of residual life prediction for the corroded pipeline,followed by the sensitivity calculation of all random evaluation parameters.And then the Monte Carlo method(MCS)is applied to verify the rationality of the new method.The research results show that:the method considering associated defect is more objective,and truly react corroded pipeline's dynamic reliability changes;obtain new method to predict residual life of corroded pipeline;corrosion depth,radial corrosion rate have a significant impact on reliability of corroded pipeline considering associated defects.The calculation results of the method are more accurate,more time-saving.
基金the National Natural Science Foundation of China(21908012)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0875 and CSTB2022BSXM-JSX0021)+2 种基金Chongqing Postdoctoral Research Project Special Funding(2023CQBSHTB3110)Postgraduate Research and Innovation Project of Chongqing University of Science and Technology(YKJCX2220541)Major Enterprise Demand Projects with Open Bidding for Selecting the Best Candidates in Yichun City,China(2023JBGSXM05)for the financial support to this work.
文摘Dye pollution is a common pollutant in wastewater that poses a serious threat to human health.Layered double hydroxide(LDH)is a commonly used adsorbent for dye removal.However,its adsorption efficiency is significantly limited by the limited adsorption active sites of the adsorbent.In this paper,a defects-rich MgFe LDH adsorbent for anionic dye wastewater was synthesized by a simple hydrothermal method and alkaline etching.Different analytical techniques,such as XRD,FT-IR,SEM,TEM,XPS,and N2 adsorption-desorption isotherm,were used to verify the chemical composition and surface characteristics of the materials,and the effects of pH,temperature,and contact time on the adsorption effect of methyl orange and the adsorption mechanism were analyzed.Alkaline etching of Al and Zn in the laminate generated defects that expose unsaturated coordination centers and create abundant adsorption sites,which can electrostatically attract and coordinate with dye ions.At 25℃,the adsorption capacity of MgFe LDH with Al etched and MgFe LDH with Zn etched for methyl orange dye reached 1722 mg·g^(-1 ) and 1685 mg·g^(-1 ),respectively,much higher than that of MgFe LDH(544 mg·g^(-1 )).This work provides a promising method for the removal of dye wastewater by adsorption and a new idea for the design and development of high-performance dye wastewater adsorbents.