期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于激光诱导击穿光谱技术的咖啡豆中咖啡因含量快速检测方法 被引量:1
1
作者 宋坤林 张初 +3 位作者 彭继宇 叶蓝韩 刘飞 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第7期2199-2204,共6页
应用激光诱导击穿光谱(LIBS)技术研究了快速检测咖啡豆中咖啡因含量的可行性。将咖啡豆磨粉压成片状作为采集LIBS光谱数据的样本,应用原子吸收分光光度计测量每个样本中咖啡因的含量。应用基线校正,小波变换和归一化等数据预处理方法;... 应用激光诱导击穿光谱(LIBS)技术研究了快速检测咖啡豆中咖啡因含量的可行性。将咖啡豆磨粉压成片状作为采集LIBS光谱数据的样本,应用原子吸收分光光度计测量每个样本中咖啡因的含量。应用基线校正,小波变换和归一化等数据预处理方法;针对基于全部变量的偏最小二乘(PLS)模型会出现过拟合,分别应用回归系数和主成分分析(PCA)选择特征变量,并建立了基于特征变量的PLS和BP神经网络模型。结果表明:基于回归系数所选特征变量的PLS模型中,建模集相关系数Rc=0.96,预测集Rp=0.91;基于PCA提取特征变量的PLS模型中,Rc=0.94,Rp=0.90;基于PCA所选特征变量的BP神经网络模型中,Rc=0.96,Rp=0.96。两种方法所提取特征变量均对应C,H,O,N,Na,Mn,Mg,Ca和Fe,且基于上述两种方法所选特征变量的PLS模型均对预测集样本有较好的预测结果,说明上述元素与咖啡因含量存在联系,应用回归系数和PCA选择的特征变量是有效的,但是咖啡豆内C,H,O,N,Na,Mn,Mg,Ca,Fe与咖啡因含量的确切关系需要进一步研究。基于PCA所选特征变量的BP神经网络模型有更优的预测结果,说明所选特征变量适用于不同的建模方法。研究表明LIBS技术结合化学计量学方法可以实现咖啡豆中咖啡因含量的快速检测。 展开更多
关键词 激光诱导击穿光谱 咖啡豆 咖啡因 偏最小二乘法 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部