The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok...The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.展开更多
Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula...Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.展开更多
A multi-channel polarimeter-interferometer has been developed on the Keda Torus eXperiment(KTX)for the study of equilibrium dynamics and internal magnetic fluctuations.A three-wave technique based on terahertz solid-s...A multi-channel polarimeter-interferometer has been developed on the Keda Torus eXperiment(KTX)for the study of equilibrium dynamics and internal magnetic fluctuations.A three-wave technique based on terahertz solid-state sources(-650 GHz)is applied for simultaneous measurements of electron density and Faraday rotation angle.The output power of the microwave source is 2 mW.Faraday rotation effect using a rotating wave plate is tested with phase noise less than 0.8°,and the density phase noise is less than 0.9°.Measurement of Faraday rotation angle and density for discharges on KTX have demonstrated high sensitivity to internal MHD activities.展开更多
The Doppler reflectometer(DR),a powerful diagnostic for the plasma perpendicular velocity(u⊥)and turbulence measurement,has been widely used in various fusion devices.Many efforts have been put into extracting the Do...The Doppler reflectometer(DR),a powerful diagnostic for the plasma perpendicular velocity(u⊥)and turbulence measurement,has been widely used in various fusion devices.Many efforts have been put into extracting the Doppler shift from the DR signal.There are several commonly used methods for Doppler shift extraction,such as the phase derivative,the center of gravity,and symmetric fitting(SFIT).However,the strong zero-order reflection component around 0 kHz may interfere with the calculation of the Doppler shift.To avoid the influence of the zerofrequency peak,the asymmetric fitting(AFIT)method was designed to calculate the Doppler shift.Nevertheless,the AFIT method may lead to an unacceptable error when the Doppler shift is relatively small compared to the half width at half maximum(HWHM).Therefore,an improved method,which can remove the zero-frequency peak and fit the remaining Doppler peak with a Gaussian function,is devised to extract the Doppler shift.This method can still work reliably whether the HWHM is larger than the Doppler shift or not.展开更多
To interpret the common symmetric peaks caused by the large-scale structure in the complex S(f)spectrum from the heterodyne Doppler reflectometry(DR)measurement in EAST,a 2D circular-shaped O-mode full-wave model base...To interpret the common symmetric peaks caused by the large-scale structure in the complex S(f)spectrum from the heterodyne Doppler reflectometry(DR)measurement in EAST,a 2D circular-shaped O-mode full-wave model based on the finite-difference time-domain method is built.The scattering characteristics and the influences on the DR signal from various scales are investigated.When the structure is located around the cutoff layer,a moving radial or poloidal large-scale structure k_(θ)k_(θ),match(k_(θ),match is the theoretic wavenumber of Bragg scattering)could both generate an oscillation phase term called‘phase modulation’,and symmetrical peaks in the complex S(f)spectrum.It was found that the image-rejection ratio A_(−1)/A_(+1)(A_(±1)represents the amplitudes of±1 order modulation peaks)could be a feasible indicator for experiment comparison.In the case when the structure is near the cutoff layer with the same arrangement as the experiment for the edge DR channel,the curve of A_(−1)/A_(+1)versus kθcan be divided into three regions,weak asymmetrical range with k_(θ)/k_(0)0.15(k_(0)is the vacuum wavenumber),harmonics range with 0.15k_(θ)/k_(0)0.4,and Bragg scattering range of 0.4k_(θ)/k_(0)0.7.In the case when the structure is located away from the cutoff layer,the final complex S(f)spectrum is the simple superimposing of modulation and Bragg scattering,and the modulation peaks have an amplitude response nearly proportional to the local density fluctuation,called the‘propagationroute effect’.Under the H-mode experiment arrangement for the core DR,a critical fluctuation amplitude Amp(n_(e,Mod.@route))/Amp(n_(e,Tur.@MSA)∼1.3–4.1(Amp(n_(e,Mod.@route))refers to the pedestal large-scale structure amplitude and Amp(ne,Tur.@MSA)refers to turbulence amplitude at the main scattering area)is needed for the structure in the pedestal to be observed by the core DR measurement.The simulations are well consistent with the experimental results.These effects need to be carefully considered during the DR signa展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100004 and 2022YFE03060003)National Natural Science Foundation of China(Nos.12375226,12175227 and 11875255)the China Postdoctoral Science Foundation(No.2022M723066).
文摘The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03090200)by National Natural Science Foundation of China(Nos.11975231,12175277 and 12305249).
文摘Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.
基金supported by National Natural Science Foundation of China(No.12175227)the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘A multi-channel polarimeter-interferometer has been developed on the Keda Torus eXperiment(KTX)for the study of equilibrium dynamics and internal magnetic fluctuations.A three-wave technique based on terahertz solid-state sources(-650 GHz)is applied for simultaneous measurements of electron density and Faraday rotation angle.The output power of the microwave source is 2 mW.Faraday rotation effect using a rotating wave plate is tested with phase noise less than 0.8°,and the density phase noise is less than 0.9°.Measurement of Faraday rotation angle and density for discharges on KTX have demonstrated high sensitivity to internal MHD activities.
基金supported in part by the National MCF Energy R&D Program(Nos.2018YFE0311200 and 2017YFE0301204)National Natural Science Foundation of China(Nos.U1967206,11975231 and 11922513)supported by the Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE009).
文摘The Doppler reflectometer(DR),a powerful diagnostic for the plasma perpendicular velocity(u⊥)and turbulence measurement,has been widely used in various fusion devices.Many efforts have been put into extracting the Doppler shift from the DR signal.There are several commonly used methods for Doppler shift extraction,such as the phase derivative,the center of gravity,and symmetric fitting(SFIT).However,the strong zero-order reflection component around 0 kHz may interfere with the calculation of the Doppler shift.To avoid the influence of the zerofrequency peak,the asymmetric fitting(AFIT)method was designed to calculate the Doppler shift.Nevertheless,the AFIT method may lead to an unacceptable error when the Doppler shift is relatively small compared to the half width at half maximum(HWHM).Therefore,an improved method,which can remove the zero-frequency peak and fit the remaining Doppler peak with a Gaussian function,is devised to extract the Doppler shift.This method can still work reliably whether the HWHM is larger than the Doppler shift or not.
基金supported by Shenzhen Clean Energy Research Institute,the National MCF Energy R&D Program of China(Nos.2018YFE0311200 and 2022YFE03070004)National Natural Science Foundation of China(Nos.U1967206 and 12075155)+1 种基金the China Postdoctoral Science Foundation(No.2021M702270)the Fundamental Research Funds for the Central Universities(No.WK3420000018)。
文摘To interpret the common symmetric peaks caused by the large-scale structure in the complex S(f)spectrum from the heterodyne Doppler reflectometry(DR)measurement in EAST,a 2D circular-shaped O-mode full-wave model based on the finite-difference time-domain method is built.The scattering characteristics and the influences on the DR signal from various scales are investigated.When the structure is located around the cutoff layer,a moving radial or poloidal large-scale structure k_(θ)k_(θ),match(k_(θ),match is the theoretic wavenumber of Bragg scattering)could both generate an oscillation phase term called‘phase modulation’,and symmetrical peaks in the complex S(f)spectrum.It was found that the image-rejection ratio A_(−1)/A_(+1)(A_(±1)represents the amplitudes of±1 order modulation peaks)could be a feasible indicator for experiment comparison.In the case when the structure is near the cutoff layer with the same arrangement as the experiment for the edge DR channel,the curve of A_(−1)/A_(+1)versus kθcan be divided into three regions,weak asymmetrical range with k_(θ)/k_(0)0.15(k_(0)is the vacuum wavenumber),harmonics range with 0.15k_(θ)/k_(0)0.4,and Bragg scattering range of 0.4k_(θ)/k_(0)0.7.In the case when the structure is located away from the cutoff layer,the final complex S(f)spectrum is the simple superimposing of modulation and Bragg scattering,and the modulation peaks have an amplitude response nearly proportional to the local density fluctuation,called the‘propagationroute effect’.Under the H-mode experiment arrangement for the core DR,a critical fluctuation amplitude Amp(n_(e,Mod.@route))/Amp(n_(e,Tur.@MSA)∼1.3–4.1(Amp(n_(e,Mod.@route))refers to the pedestal large-scale structure amplitude and Amp(ne,Tur.@MSA)refers to turbulence amplitude at the main scattering area)is needed for the structure in the pedestal to be observed by the core DR measurement.The simulations are well consistent with the experimental results.These effects need to be carefully considered during the DR signa