期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Exposure to Long Magnetic Resonance Imaging Thermometry Does Not Cause Significant DNA Double-Strand Breaks on CF-1 Mice
1
作者 christopher brian abraham Sepideh Dadgar +2 位作者 Wely B. Floriano Michael Campbell Laura Curiel 《Journal of Modern Physics》 2022年第6期839-850,共12页
The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbe... The purpose of the study was to investigate if the high gradient strength and slew rate used for long MRI-thermometry monitoring could cause DNA double-stranded breaks (DSBs). To this end, an enzyme-linked immunosorbent assay (ELISA) was used to quantify &gamma;H2AX, a molecular marker for DSBs, in the blood of mice after a 6-hour exposure to magnetic resonance imaging (MRI). Fourteen CF-1 female mice were separated into 4 experimental groups: Untreated negative control, MRI-treated, MRI-Control, and exposed to ionizing radiation positive control. Untreated negative control was used as a baseline for ELISA to quantify &gamma;H2AX. MRI-treated consisted of a 6-hour continuous magnetic resonance imaging (MRI) echo planar imaging (EPI) sequence with a slew rate of 192 mT/m/s constituting a significantly longer imaging time than routine clinical imaging. MRI-control mice were maintained under the same conditions outside the MRI scanner for 6-hours. Mice in the irradiation group served as a positive control of DSBs and were exposed to either 2 Gy, 5 Gy or 10 Gy of ionizing radiation. DSBs in the blood lymphocytes from the treatment groups were analyzed using the &gamma;H2AX ELISA and compared. Total protein concentration in lysates was determined for each blood sample and averaged 1 ± 0.35 mg/mL. Irradiated positive controls were used to test radiation dose-dependency of the &gamma;H2AX ELISA assay where a linear dependency on radiation exposure was observed (r<sup>2</sup> = 0.93) between untreated and irradiated samples. Mean and standard error mean of &gamma;H2AX formation were calculated and compared between each treatment group. Repeated measures 1-way ANOVA showed statistically significant differences between the means of irradiated controls and both the MRI-control and MRI-treated groups. There was no statistically significant difference between the MRI-treated samples and the MRI-control groups. Our results show that long MRI exposure at a high slew rate did not cause increased levels of &gamma;H2AX when compa 展开更多
关键词 γH2AX DNA Damage MRI Thermometry GADOLINIUM Double-Stranded Breaks (DSBs) ELISA Ionizing Radiation
下载PDF
Contrast Optimization for an Animal Model of Prostate Cancer MRI at 3T
2
作者 christopher brian abraham Boguslaw Tomanek Laura Curiel 《Journal of Modern Physics》 2016年第8期819-826,共8页
Purpose: To optimize contrast to noise ratio (CNR) in magnetic resonance imaging (MRI) of prostate cancer using at 3T. Methods: CNR was expressed as a difference in MR signals of two samples. Amulti-echo spin-echo (ME... Purpose: To optimize contrast to noise ratio (CNR) in magnetic resonance imaging (MRI) of prostate cancer using at 3T. Methods: CNR was expressed as a difference in MR signals of two samples. Amulti-echo spin-echo (MESE) pulse sequence was used. The theoretical value of the maximum CNR was obtained using the derivative of CNR with echo time (TE) as a variable. The T<sub>1</sub> relaxation time was ignored as repetition time (TR) was assumed to be very long (TR >> T<sub>1</sub>). The theoretical calculations were confirmed with in vitro and in vivo experiments. For in vitro experiments we used samples with different T<sub>2</sub> values using various concentrations of super paramagnetic iron oxide (SPIO) and for in vivo experiments we used an animal model of prostate cancer. Results: CNR was maximized by selecting the optimum TE for a multi-echo spin-echo (MESE) pulse sequence based on theoretical predictions. MR images of prostate cancer at 3T were obtained and showed maximum CNR at the predicted TE. Conclusions: It was possible to maximize CNR of prostate tumour by selecting the optimal TE based on simple theoretical calculations. The proposed method can be applied to other pulse sequences and tissues. It can be applied to any MRI system at any magnetic field. However the method requires knowledge of T<sub>2</sub> relaxation times. 展开更多
关键词 MRI Tissue Contrast Prostate Cancer Spin Echo
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部