Discrete-element-method (DEM) simulations have been performed to investigate the cross-sectional flow of non-spherical particles in horizontal rotating cylinders with and without wall rougheners. The non-spherical p...Discrete-element-method (DEM) simulations have been performed to investigate the cross-sectional flow of non-spherical particles in horizontal rotating cylinders with and without wall rougheners. The non-spherical particles were modeled using the three-dimensional super-quadric equation. The influence of wall rougheners on flow behavior of grains was studied for increasing particle blockiness. Moreover, for approximately cubic particles (squareness parameters [555]), the rotational speed, gravitational acceleration and particle size were altered to investigate the effect of wall rougheners under a range of operating conditions. For spherical and near-spherical particles (approximately up to the squareness parameters [344]), wall rougheners are necessary to prevent slippage of the bed against the cylinder wall. For highly cubic particle geometries (squareness parameters larger than [3441), wall rougheners resulted in a counter-intuitive decrease in the angle of repose of the bed. In addition, wall rougheners employed in this study were demonstrated to have a higher impact on bed dynamics at higher rotational speeds and lower gravitational accelerations. Nevertheless, using wall rougheners had a comparatively small influence on particle-flow characteristics for a bed composed of finer grains.展开更多
The discrete element model (DEM) is a very promising modelling strategy for two-phase granular systems. However, owing to a lack of experimental measurements, validation of numerical simulations of two-phase granula...The discrete element model (DEM) is a very promising modelling strategy for two-phase granular systems. However, owing to a lack of experimental measurements, validation of numerical simulations of two-phase granular systems is still an important issue. In this study, a small two-dimensional gas- fluidized bed was simulated using a discrete element model. The dimensions of the simulated bed were 44mm × 10mm × 120 mm and the fluidized particles had a diameter dp = 1.2 mm and density ρp = 1000 kg/m^3. The comparison between DEM simulations and experiments are performed on the basis of time-averaged voidage maps. The drag-law of Beetstra et al. [Beetstra, R., van der Hoef, M.A., & Kuipers,J. A. M. (2007b). Drag force of intermediate Reynolds number flow past mono- and bidispersed arrays of spheres. AIChE Journal, 53,489-501 ] seems to give the best results. The simulations are fairly insensitive to the coefficient of restitution and the coefficient of friction as long as some route of energy dissipation during particle-particle and particle-wall contact is provided. Changing the boundary condition of the gas phase at the side-walls from zero-slip to full-slip does not affect the simulation results. Care is to be taken that the cell sizes are chosen so that a reasonable number of particles can be found in a fluid cell.展开更多
Surgery plays a central role in the treatment of benign and malignant pancreatic diseases.Artificial intelligence(AI)is an important upcoming technology to support surgeons in pre-,intra-,and postoperative diagnosis,d...Surgery plays a central role in the treatment of benign and malignant pancreatic diseases.Artificial intelligence(AI)is an important upcoming technology to support surgeons in pre-,intra-,and postoperative diagnosis,decision-making and training toward an optimized patient care.Current AI applications show a promising role in the evaluation of preoperative images for prediction of malignancy and resectability,intraoperative decision support,surgical training as well as a postoperative risk stratification to per-sonalize the management of complications.This scoping review summarizes the most up to date developments of AI in pancreatic surgery with the highest available level of evidence.展开更多
This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization re...This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization regimes. The unique capability of MR to not only image the solids' distribution (voidage) but also the velocity of the particulate phase is clearly shown. It is demonstrated that MR can provide measurements over different length and time scales. With the MR equipment used for the studies summarized here, temporal and spatial scales range from sub-millisecond to hours and from a few hundred micrometres to a few centimetres, respectively. Besides providing crucial data required for an improved understanding of the underlying physics of granular flows, multi-scale MR measurements were also used to validate numerical simulations of granular systems. It is shown that predictions of time-averaged properties, such as voidage and velocity of the particulate phase, made using the Discrete Element Model agree very well with MR measurements.展开更多
Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of ...Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N_(2)O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N_(2)O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-))concentrations,cumulative amount and yield-scaled N_(2)O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N_(2)O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO_(3)^(-)concentration by nitrapyrin was also observed.The average yield-scaled N_(2)O emission was 13.6 g N_(2)O-N kg^(-1)N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N_(2)O-N kg^(-1)N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N_(2)O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.展开更多
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition w...Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.展开更多
A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to...A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil p H along with increasing orchard age significantly. The amo A gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity(defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis–Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3-consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3-loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age.展开更多
Magnetic resonance imaging (MRI) gave images of air jets from orifices in the distributor plate of a bed of poppy seeds. Attention focused on two features: (1) The interaction between nearby vertical jets from tw...Magnetic resonance imaging (MRI) gave images of air jets from orifices in the distributor plate of a bed of poppy seeds. Attention focused on two features: (1) The interaction between nearby vertical jets from two, three or four orifices; (2) Wall effects, where one or more orifices created vertical jets near the vertical wall of the cylinder containing the particle bed. The results show that nearby jets are mutually attracted. Likewise a jet near a wall bends out of the vertical, towards the wall, For multiple adjacent jets, the jet lengths show dependence on orifice layout: the lengths are in reasonable agreement with published measurements, by other methods, for single jets. The MRI gives three-dimensional images of the single jets and of multiple jets, separate or merging.展开更多
Nitrification inhibitors are widely used in agriculture to mitigate nitrous oxide(N_(2)O)emission and increase crop yield.However,no concrete information on their mitigation of N_(2)O emission is available under soil ...Nitrification inhibitors are widely used in agriculture to mitigate nitrous oxide(N_(2)O)emission and increase crop yield.However,no concrete information on their mitigation of N_(2)O emission is available under soil and environmental conditions as in Pakistan.A field experiment was established using a silt clay loam soil from Peshawar,Pakistan,to study the effect of urea applied in combination with a nitrification inhibitor,nitrapyrin(2-chloro-6-tri-chloromethyl pyridine),and/or a plant growth regulator,gibberellic acid(GA_3),on N_(2)O emission and the nitrogen(N)uptake efficiency of maize.The experimental design was a randomized complete block with five treatments in four replicates:control with no N(CK),urea(200 kg N ha^(-1))alone,urea in combination with nitrapyrin(700 g ha^(-1)),urea in combination with GA_3(60 g ha^(-1)),and urea in combination with nitrapyrin and GA_3.The N_(2)O emission,yield,N response efficiency,and total N uptake were measured during the experimental period.The treatment with urea and nitrapyrin reduced total N_(2)O emission by 39%–43%and decreased yield-scaled N_(2)O emission by 47%–52%,relative to the treatment with urea alone.The maize plant biomass,grain yield,and total N uptake increased significantly by 23%,17%,and 15%,respectively,in the treatment with urea and nitrapyrin,relative to the treatment with urea alone,which was possibly due to N saving,lower N loss,and increased N uptake in the form of ammonium;they were further enhanced in the treatment with urea,nitrapyrin,and GA_3 by 27%,36%,and 25%,respectively,probably because of the stimulating effect of GA_3 on plant growth and development and the reduction in biotic and abiotic stresses.These results suggest that applying urea in combination with nitrapyrin and GA_3 has the potential to mitigate N_(2)O emission,improve N response efficiency,and increase maize yield.展开更多
The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neut...The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neutrino measurements,such as its low-energy threshold,high energy resolution compared with water Cherenkov detectors,and much larger target mass compared with previous liquid scintillator detectors.In this paper,we present a comprehensive assessment of JUNO's potential for detecting^8B solar neutrinos via the neutrino-electron elastic scattering process.A reduced 2 MeV threshold for the recoil electron energy is found to be achievable,assuming that the intrinsic radioactive background^(238)U and^(232)Th in the liquid scintillator can be controlled to 10^(-17)g/g.With ten years of data acquisition,approximately 60,000 signal and 30,000 background events are expected.This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter,which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework.IfDelta m^(2)_(21)=4.8times10^(-5);(7.5times10^(-5))eV^(2),JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3sigma(2sigma)level by measuring the non-zero signal rate variation with respect to the solar zenith angle.Moreover,JUNO can simultaneously measureDelta m^2_(21)using^8B solar neutrinos to a precision of 20% or better,depending on the central value,and to sub-percent precision using reactor antineutrinos.A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m^2_(21)reported by solar neutrino experiments and the KamLAND experiment.展开更多
Urea is the most common nitrogen(N)fertilizer used in the tropics but it has the risk of high gaseous nitrogen(N)losses.Use of nitrification inhibitor has been suggested as a potential mitigation measure for gaseous N...Urea is the most common nitrogen(N)fertilizer used in the tropics but it has the risk of high gaseous nitrogen(N)losses.Use of nitrification inhibitor has been suggested as a potential mitigation measure for gaseous N losses in N fertilizer-applied fields.In a field trial on a tropical Andosol pastureland in Costa Rica,gaseous emissions of ammonia(NH_(3))and nitrous oxide(N_(2)O)and grass yield were quantified from plots treated with urea(U;41.7 kg N ha^(-1)application^(-1))and urea plus the nitrification inhibitor nitrapyrin(U+NI;41.7 kg N ha^(-1)application^(-1)and 350 g of nitrapyrin for each 100 kg of N applied)and control plots(without U and NI)over a six-month period(rainy season).Volatilization of NH_(3)(August to November)in U(7.4%±1.3%of N applied)and U+NI(8.1%±0.9%of N applied)were not significantly different(P>0.05).Emissions of N_(2)O in U and U+NI from June to November were significantly different(P<0.05)only in October,when N_(2)O emission in U+NI was higher than that in U.Yield and crude protein production of grass were significantly higher(P<0.05)in U and U+NI than in the control plots,but they were not significantly different between U and U+NI.There was no significant difference in yield-scaled N_(2)O emission between U(0.31±0.10 g N kg^(-1)dry matter)and U+NI(0.47±0.10 g N kg^(-1)dry matter).The results suggest that nitrapyrin is not a viable mitigation option for gaseous N losses under typical N fertilizer application practices of pasturelands at the study site.展开更多
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N_(2)O)emissions.The application of nitrification inhibitors has been reported as an effective management practi...In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N_(2)O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N_(2)O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg^(-1),and N 5.6 g kg^(-1))sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N_(2)O emissions,N_(2)O derived from fertilizer,soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-)),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH_(4)^(+)content between the UR and UR+NI treatments,probably because of soil mineralization and NO_(3)^(-)produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N_(2)O emissions in UR(0.51±0.12 mg N_(2)O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH_(4)^(+)and NO_(3)^(-)production.Additionally,it was found that N_(2)O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N_(2)O emissions only if a substantial N surplus exists in soils with high organic matter content.展开更多
In this report,we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of su...In this report,we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1-x)Se2(CIGS)modules.In this way,we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished.Specifically,by analyzing the standard P1 patterning line ablated before the CIGS deposition,we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath.We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope(SEM)cross-section,where a reduction of the photoemission cannot be explained by a thickness variation.We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS.We then document,for the first time,the existence of a short-range damaged area,which is independent of the application of an optical aperture on the laser path.Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.展开更多
One of the main challenges facing humankind is ensuring food security for a rapidly growing population with lower environmental footprints under changing climate. Environmental unsustainability of agro-food systems is...One of the main challenges facing humankind is ensuring food security for a rapidly growing population with lower environmental footprints under changing climate. Environmental unsustainability of agro-food systems is multi-faced,but alteration of biogeochemical cycles (e.g., nitrogen (N)and phosphorus (P) cycles) and emissions of greenhouse gases (GHGs) to the atmosphere have been reported as one of the main disruptive forces over safe-operating space of planetary boundaries (Springmann et al., 2018).展开更多
基金the Swiss National Science Foundation(Grant 200021 132657/1)the China Scholarship Council(Guang Lu) for partial financial support of this work
文摘Discrete-element-method (DEM) simulations have been performed to investigate the cross-sectional flow of non-spherical particles in horizontal rotating cylinders with and without wall rougheners. The non-spherical particles were modeled using the three-dimensional super-quadric equation. The influence of wall rougheners on flow behavior of grains was studied for increasing particle blockiness. Moreover, for approximately cubic particles (squareness parameters [555]), the rotational speed, gravitational acceleration and particle size were altered to investigate the effect of wall rougheners under a range of operating conditions. For spherical and near-spherical particles (approximately up to the squareness parameters [344]), wall rougheners are necessary to prevent slippage of the bed against the cylinder wall. For highly cubic particle geometries (squareness parameters larger than [3441), wall rougheners resulted in a counter-intuitive decrease in the angle of repose of the bed. In addition, wall rougheners employed in this study were demonstrated to have a higher impact on bed dynamics at higher rotational speeds and lower gravitational accelerations. Nevertheless, using wall rougheners had a comparatively small influence on particle-flow characteristics for a bed composed of finer grains.
基金funding from the EPSRC(EP/C547195/1 and GR/S20789/01)
文摘The discrete element model (DEM) is a very promising modelling strategy for two-phase granular systems. However, owing to a lack of experimental measurements, validation of numerical simulations of two-phase granular systems is still an important issue. In this study, a small two-dimensional gas- fluidized bed was simulated using a discrete element model. The dimensions of the simulated bed were 44mm × 10mm × 120 mm and the fluidized particles had a diameter dp = 1.2 mm and density ρp = 1000 kg/m^3. The comparison between DEM simulations and experiments are performed on the basis of time-averaged voidage maps. The drag-law of Beetstra et al. [Beetstra, R., van der Hoef, M.A., & Kuipers,J. A. M. (2007b). Drag force of intermediate Reynolds number flow past mono- and bidispersed arrays of spheres. AIChE Journal, 53,489-501 ] seems to give the best results. The simulations are fairly insensitive to the coefficient of restitution and the coefficient of friction as long as some route of energy dissipation during particle-particle and particle-wall contact is provided. Changing the boundary condition of the gas phase at the side-walls from zero-slip to full-slip does not affect the simulation results. Care is to be taken that the cell sizes are chosen so that a reasonable number of particles can be found in a fluid cell.
文摘Surgery plays a central role in the treatment of benign and malignant pancreatic diseases.Artificial intelligence(AI)is an important upcoming technology to support surgeons in pre-,intra-,and postoperative diagnosis,decision-making and training toward an optimized patient care.Current AI applications show a promising role in the evaluation of preoperative images for prediction of malignancy and resectability,intraoperative decision support,surgical training as well as a postoperative risk stratification to per-sonalize the management of complications.This scoping review summarizes the most up to date developments of AI in pancreatic surgery with the highest available level of evidence.
基金Financial support from the EPSRC (EP/C547195/1and GR/S20789/01)
文摘This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization regimes. The unique capability of MR to not only image the solids' distribution (voidage) but also the velocity of the particulate phase is clearly shown. It is demonstrated that MR can provide measurements over different length and time scales. With the MR equipment used for the studies summarized here, temporal and spatial scales range from sub-millisecond to hours and from a few hundred micrometres to a few centimetres, respectively. Besides providing crucial data required for an improved understanding of the underlying physics of granular flows, multi-scale MR measurements were also used to validate numerical simulations of granular systems. It is shown that predictions of time-averaged properties, such as voidage and velocity of the particulate phase, made using the Discrete Element Model agree very well with MR measurements.
基金funded by the International Atomic Energy Agency,Vienna,through the coordinated research project Minimizing Farming Impacts on Climate Change by Enhancing Carbon and Nitrogen Capture and Storage in AgroEcosystems(No.18595)of Soil and Water Management and Crop Nutrition Section,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,Department of Nuclear Sciences and Applications,Vienna,Austria。
文摘Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N_(2)O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N_(2)O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-))concentrations,cumulative amount and yield-scaled N_(2)O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N_(2)O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO_(3)^(-)concentration by nitrapyrin was also observed.The average yield-scaled N_(2)O emission was 13.6 g N_(2)O-N kg^(-1)N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N_(2)O-N kg^(-1)N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N_(2)O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.
基金supported by Grants from the ‘‘973’’ Project(2014CB953803)the Fundamental Research Funds for the Central Universities(2572017EA02)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,164320H116)
文摘Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.
基金supported by the National Natural Science Foundation of China (Nos.41401339, 41330744)the Natural Science Foundation of Jiangsu Province (No.BK20140062)and Fujian Province (No.2014J01145)
文摘A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a15 N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil p H along with increasing orchard age significantly. The amo A gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity(defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis–Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3-consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3-loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age.
基金the Engineering and Physical Sciences Research Council(Grant number EP/F041772/1)
文摘Magnetic resonance imaging (MRI) gave images of air jets from orifices in the distributor plate of a bed of poppy seeds. Attention focused on two features: (1) The interaction between nearby vertical jets from two, three or four orifices; (2) Wall effects, where one or more orifices created vertical jets near the vertical wall of the cylinder containing the particle bed. The results show that nearby jets are mutually attracted. Likewise a jet near a wall bends out of the vertical, towards the wall, For multiple adjacent jets, the jet lengths show dependence on orifice layout: the lengths are in reasonable agreement with published measurements, by other methods, for single jets. The MRI gives three-dimensional images of the single jets and of multiple jets, separate or merging.
基金funded by the International Atomic Energy Agency through a Coordinated Research Project(CRP D1.50.16)“Minimizing Farming Impacts on Climate Change by Enhancing Carbon and Nitrogen Capture and Storage in Agro-Ecosystems”(18595)of Soil and Water Management and Crop Nutrition Section,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,Department of Nuclear Sciences and Applications。
文摘Nitrification inhibitors are widely used in agriculture to mitigate nitrous oxide(N_(2)O)emission and increase crop yield.However,no concrete information on their mitigation of N_(2)O emission is available under soil and environmental conditions as in Pakistan.A field experiment was established using a silt clay loam soil from Peshawar,Pakistan,to study the effect of urea applied in combination with a nitrification inhibitor,nitrapyrin(2-chloro-6-tri-chloromethyl pyridine),and/or a plant growth regulator,gibberellic acid(GA_3),on N_(2)O emission and the nitrogen(N)uptake efficiency of maize.The experimental design was a randomized complete block with five treatments in four replicates:control with no N(CK),urea(200 kg N ha^(-1))alone,urea in combination with nitrapyrin(700 g ha^(-1)),urea in combination with GA_3(60 g ha^(-1)),and urea in combination with nitrapyrin and GA_3.The N_(2)O emission,yield,N response efficiency,and total N uptake were measured during the experimental period.The treatment with urea and nitrapyrin reduced total N_(2)O emission by 39%–43%and decreased yield-scaled N_(2)O emission by 47%–52%,relative to the treatment with urea alone.The maize plant biomass,grain yield,and total N uptake increased significantly by 23%,17%,and 15%,respectively,in the treatment with urea and nitrapyrin,relative to the treatment with urea alone,which was possibly due to N saving,lower N loss,and increased N uptake in the form of ammonium;they were further enhanced in the treatment with urea,nitrapyrin,and GA_3 by 27%,36%,and 25%,respectively,probably because of the stimulating effect of GA_3 on plant growth and development and the reduction in biotic and abiotic stresses.These results suggest that applying urea in combination with nitrapyrin and GA_3 has the potential to mitigate N_(2)O emission,improve N response efficiency,and increase maize yield.
基金This work was supported by the Chinese Academy of Sciences,the National Key R&D Program of China,the CAS Center for Excellence in Particle Physics,the Joint Large Scale Scientific Facility Funds of the NSFC and CAS,Wuyi University,and the Tsung-Dao Lee Instiute of Shanghai Jiao Tong University in China,the In stiut National de Physique Nucleaire et de Physique de Particules(IN2P3)in France,the Istituto Nazionale di Fisica Nucleare(INFN)in Italy,the Fond de la Recherche Scintifique(F.R.S-FNRS)and FWO under the"Excellence of Science-EOS"in Belgium,the Conselho Nacional de Desenvolvimento Cientificoce Tecnologico in Brazil,the Agencia Nacional de Investigacion y Desrrollo in Chile,the Charles University Research Centre and the Ministry of Education,Youth,and Sports in Czech Republic,the Deutsche Forschungsgemeinschaft(DFG),the Helmholtz Association,and the Cluster of Exellence PRISMA+in Germany,the Joint Institute of Nuclear Research(JINR),Lomonosov Moscow State University,and Russian Foundation for Basic Research(RFBR)in Russia,the MOST and MOE in Taiwan,the Chu-lalongkorm University and Suranaree University of Technology in Thailand,and the University of aliformia at Irvine in USA.
文摘The Jiangmen Underground Neutrino Observatory(JUNO)features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector.Some of JUNO's features make it an excellent location for^8B solar neutrino measurements,such as its low-energy threshold,high energy resolution compared with water Cherenkov detectors,and much larger target mass compared with previous liquid scintillator detectors.In this paper,we present a comprehensive assessment of JUNO's potential for detecting^8B solar neutrinos via the neutrino-electron elastic scattering process.A reduced 2 MeV threshold for the recoil electron energy is found to be achievable,assuming that the intrinsic radioactive background^(238)U and^(232)Th in the liquid scintillator can be controlled to 10^(-17)g/g.With ten years of data acquisition,approximately 60,000 signal and 30,000 background events are expected.This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter,which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework.IfDelta m^(2)_(21)=4.8times10^(-5);(7.5times10^(-5))eV^(2),JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3sigma(2sigma)level by measuring the non-zero signal rate variation with respect to the solar zenith angle.Moreover,JUNO can simultaneously measureDelta m^2_(21)using^8B solar neutrinos to a precision of 20% or better,depending on the central value,and to sub-percent precision using reactor antineutrinos.A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m^2_(21)reported by solar neutrino experiments and the KamLAND experiment.
基金funded by the International Atomic Energy Agency(IAEA),Vienna,Austria,through a Coordinated Research Project(No.CRP D1.50.16)of the Soil and Water Management and Crop Nutrition Section,Joint FAO/IAEA Division of Nuclear Techniques in FoodAgriculture and through the Technical Cooperation Project(No.COS5031)by the University of Costa Rica(No.VI-802-B7-505)。
文摘Urea is the most common nitrogen(N)fertilizer used in the tropics but it has the risk of high gaseous nitrogen(N)losses.Use of nitrification inhibitor has been suggested as a potential mitigation measure for gaseous N losses in N fertilizer-applied fields.In a field trial on a tropical Andosol pastureland in Costa Rica,gaseous emissions of ammonia(NH_(3))and nitrous oxide(N_(2)O)and grass yield were quantified from plots treated with urea(U;41.7 kg N ha^(-1)application^(-1))and urea plus the nitrification inhibitor nitrapyrin(U+NI;41.7 kg N ha^(-1)application^(-1)and 350 g of nitrapyrin for each 100 kg of N applied)and control plots(without U and NI)over a six-month period(rainy season).Volatilization of NH_(3)(August to November)in U(7.4%±1.3%of N applied)and U+NI(8.1%±0.9%of N applied)were not significantly different(P>0.05).Emissions of N_(2)O in U and U+NI from June to November were significantly different(P<0.05)only in October,when N_(2)O emission in U+NI was higher than that in U.Yield and crude protein production of grass were significantly higher(P<0.05)in U and U+NI than in the control plots,but they were not significantly different between U and U+NI.There was no significant difference in yield-scaled N_(2)O emission between U(0.31±0.10 g N kg^(-1)dry matter)and U+NI(0.47±0.10 g N kg^(-1)dry matter).The results suggest that nitrapyrin is not a viable mitigation option for gaseous N losses under typical N fertilizer application practices of pasturelands at the study site.
基金supported by the International Atomic Energy Agency (IAEA), Vienna, Austria through a Coordinated Research Project (No. CRP D1.50.16) of Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agricultureby the University of Costa Rica (No. VI-802-B7-505)
文摘In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N_(2)O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N_(2)O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg^(-1),and N 5.6 g kg^(-1))sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N_(2)O emissions,N_(2)O derived from fertilizer,soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-)),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH_(4)^(+)content between the UR and UR+NI treatments,probably because of soil mineralization and NO_(3)^(-)produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N_(2)O emissions in UR(0.51±0.12 mg N_(2)O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH_(4)^(+)and NO_(3)^(-)production.Additionally,it was found that N_(2)O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N_(2)O emissions only if a substantial N surplus exists in soils with high organic matter content.
基金the DFG research training group GRK 1896 at Erlangen University and from the Joint Project Helmholtz-Institute Erlangen-Nürnberg(HI-ERN)for Renewable Energy Production under Project DBF01253,respectivelyfinancial support through the“Aufbruch Bayern”initiative of the state of Bavaria(EnCN and Solar Factory of the Future)and the“Solar Factory of the Future”with the Energy Campus Nürnberg(EnCN).
文摘In this report,we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1-x)Se2(CIGS)modules.In this way,we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished.Specifically,by analyzing the standard P1 patterning line ablated before the CIGS deposition,we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath.We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope(SEM)cross-section,where a reduction of the photoemission cannot be explained by a thickness variation.We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS.We then document,for the first time,the existence of a short-range damaged area,which is independent of the application of an optical aperture on the laser path.Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.
文摘One of the main challenges facing humankind is ensuring food security for a rapidly growing population with lower environmental footprints under changing climate. Environmental unsustainability of agro-food systems is multi-faced,but alteration of biogeochemical cycles (e.g., nitrogen (N)and phosphorus (P) cycles) and emissions of greenhouse gases (GHGs) to the atmosphere have been reported as one of the main disruptive forces over safe-operating space of planetary boundaries (Springmann et al., 2018).