This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simpli...This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simplify fingertip detection and to enhance recognition accuracy. For each character stroke, 8 sample points (including start and end points) are recorded. 7 tangent angles between consecutive sampled points are also recorded as features. In addition, 3 features angles are extracted: angles of the triangle consisting of the start point, end point and average point of all (8 total) sampled points. According to these key feature angles, a simple template matching K-nearest-neighbor classifier is applied to distinguish each character stroke. Experimental result showed that the system can successfully recognize fingertip-writing character strokes of digits and small lower case letter alphabets with an accuracy of almost 100%. Overall, the proposed finger-tip-writing recognition system provides an easy-to-use and accurate visual character input method.展开更多
This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark i...This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark image processing and image recognition, is implemented on a single FPGA chip with one CMOS image sensor. The proposed feature representation of the artificial ceiling landmarks is invariant with respect to rotation and translation. One unique feature of the proposed ceiling landmark recognition system is that the feature points of landmarks are determined by topological information from both the foreground and background. To enhance recognition accuracy, landmark classification is performed after the mobile robot is moved to a position such that the ceiling landmark is located in the upright- top corner position of the robot’s camera image. The accuracy of the proposed artificial ceiling landmark recognition system using the nearest neighbor classification is 100% in our experiments.展开更多
文摘This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simplify fingertip detection and to enhance recognition accuracy. For each character stroke, 8 sample points (including start and end points) are recorded. 7 tangent angles between consecutive sampled points are also recorded as features. In addition, 3 features angles are extracted: angles of the triangle consisting of the start point, end point and average point of all (8 total) sampled points. According to these key feature angles, a simple template matching K-nearest-neighbor classifier is applied to distinguish each character stroke. Experimental result showed that the system can successfully recognize fingertip-writing character strokes of digits and small lower case letter alphabets with an accuracy of almost 100%. Overall, the proposed finger-tip-writing recognition system provides an easy-to-use and accurate visual character input method.
文摘This paper presents an image-based mobile robot guidance system in an indoor space with installed artificial ceiling landmarks. The overall system, including an omni-directional mobile robot motion control, landmark image processing and image recognition, is implemented on a single FPGA chip with one CMOS image sensor. The proposed feature representation of the artificial ceiling landmarks is invariant with respect to rotation and translation. One unique feature of the proposed ceiling landmark recognition system is that the feature points of landmarks are determined by topological information from both the foreground and background. To enhance recognition accuracy, landmark classification is performed after the mobile robot is moved to a position such that the ceiling landmark is located in the upright- top corner position of the robot’s camera image. The accuracy of the proposed artificial ceiling landmark recognition system using the nearest neighbor classification is 100% in our experiments.