Compared with the conventional casting process, digital pattern-less casting technology has many advantages such as good machining accuracy, a short processing cycle, and low production cost. It is a new rapid manufac...Compared with the conventional casting process, digital pattern-less casting technology has many advantages such as good machining accuracy, a short processing cycle, and low production cost. It is a new rapid manufacturing technology for castings, integrated with CAD/CAM, casting, CNC machining and many other advanced technologies. With this digital casting technology, no pattern is needed for making molds; it is precise, f lexible, and green. Usually, art castings have complex structures and are made in small batches or even made in a single-piece, especially for large-sized art castings. So it has the shortcomings of high cost, low eff iciency and long time for making a pattern to produce art castings with the conventional casting processes. However, the digital pattern-less casting technology can be applied to fabricate art castings, since it can greatly shorten the manufacturing cycle and lower the production cost, thus having a very good prospect. In this study, based on the digital pattern-less casting technology, a plaque casting with artistic Chinese characters(a Chinese poem) was designed and manufactured, and the production process was demonstrated in detail.展开更多
Blue-emission(~480 nm)CsPbBr_(3) nanoparticles with ultra-small size(~2.1 nm)are synthesized using the liquid nitrogen freezing with the ligand of dodecylbenzene sulfonic acid(DBSA).Asymmetric narrow emissions at the ...Blue-emission(~480 nm)CsPbBr_(3) nanoparticles with ultra-small size(~2.1 nm)are synthesized using the liquid nitrogen freezing with the ligand of dodecylbenzene sulfonic acid(DBSA).Asymmetric narrow emissions at the low energy side,with the full width at half-maximum of~20 nm,are observed in solution and film at room temperature.The spectral asymmetry is mainly ascribed to phonon vibronic replica with averaged phonon energy of~40 meV.Moreover,exciting this CsPbBr_(3) nanoparticles solution using linearly polarized 6 ns pulsed laser at 355 nm,we observe polarized emission with polarization degree(P_(PL))of~7%,and P_(PL) decreases more than 20%in the vibronic progression.However,the P_(PL) goes to zero in frozen solutions as well as in films.Thus we speculate the polarized emission is due to the photoinduced re-alignment of nanoparticles,and the diminished P_(PL) at the phonon side band may be due to the non-adiabatic electronic-to-vibronic transitions.The novel phenomena from the ultra-small CsPbBr_(3) nanoparticle demonstrated in this work may provide fundamental insights into its photophysics with direct implications for optoelectronics.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51105257)
文摘Compared with the conventional casting process, digital pattern-less casting technology has many advantages such as good machining accuracy, a short processing cycle, and low production cost. It is a new rapid manufacturing technology for castings, integrated with CAD/CAM, casting, CNC machining and many other advanced technologies. With this digital casting technology, no pattern is needed for making molds; it is precise, f lexible, and green. Usually, art castings have complex structures and are made in small batches or even made in a single-piece, especially for large-sized art castings. So it has the shortcomings of high cost, low eff iciency and long time for making a pattern to produce art castings with the conventional casting processes. However, the digital pattern-less casting technology can be applied to fabricate art castings, since it can greatly shorten the manufacturing cycle and lower the production cost, thus having a very good prospect. In this study, based on the digital pattern-less casting technology, a plaque casting with artistic Chinese characters(a Chinese poem) was designed and manufactured, and the production process was demonstrated in detail.
基金supported by startup funding at Fudan University,National Natural Science Foundation of China (Nos.62074079,61774039)large instrument equipment open fund of Nanjing University of Science and Technology.
文摘Blue-emission(~480 nm)CsPbBr_(3) nanoparticles with ultra-small size(~2.1 nm)are synthesized using the liquid nitrogen freezing with the ligand of dodecylbenzene sulfonic acid(DBSA).Asymmetric narrow emissions at the low energy side,with the full width at half-maximum of~20 nm,are observed in solution and film at room temperature.The spectral asymmetry is mainly ascribed to phonon vibronic replica with averaged phonon energy of~40 meV.Moreover,exciting this CsPbBr_(3) nanoparticles solution using linearly polarized 6 ns pulsed laser at 355 nm,we observe polarized emission with polarization degree(P_(PL))of~7%,and P_(PL) decreases more than 20%in the vibronic progression.However,the P_(PL) goes to zero in frozen solutions as well as in films.Thus we speculate the polarized emission is due to the photoinduced re-alignment of nanoparticles,and the diminished P_(PL) at the phonon side band may be due to the non-adiabatic electronic-to-vibronic transitions.The novel phenomena from the ultra-small CsPbBr_(3) nanoparticle demonstrated in this work may provide fundamental insights into its photophysics with direct implications for optoelectronics.