Electrically driven structural patterns in liquid crystals(LCs)have attracted considerable attention due to their electrooptical applications.Here,we disclose various appealing reconfigurable LC microstructures in a d...Electrically driven structural patterns in liquid crystals(LCs)have attracted considerable attention due to their electrooptical applications.Here,we disclose various appealing reconfigurable LC microstructures in a dual frequency nematic LC(DFNLC)owing to the electroconvection-induced distortion of the LC director,including one-dimensional rolls,chevron pattern,two-dimensional grids,and unstable chaos.These patterns can be switched among each other,and the lattice constants are modulated by tuning the amplitude and frequency of the applied electric field.The electrically switchable self-assembled microstructures and their beam steering capabilities thus provide a feasible way to tune the functions of DFNLC-based optical devices.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFA1202000)National Natural Science Foundation of China(Nos.52003115 and RK106LH21001)Natural Science Foundation of Jiangsu Province(Nos.BK20212004 and BK20200320).
文摘Electrically driven structural patterns in liquid crystals(LCs)have attracted considerable attention due to their electrooptical applications.Here,we disclose various appealing reconfigurable LC microstructures in a dual frequency nematic LC(DFNLC)owing to the electroconvection-induced distortion of the LC director,including one-dimensional rolls,chevron pattern,two-dimensional grids,and unstable chaos.These patterns can be switched among each other,and the lattice constants are modulated by tuning the amplitude and frequency of the applied electric field.The electrically switchable self-assembled microstructures and their beam steering capabilities thus provide a feasible way to tune the functions of DFNLC-based optical devices.