运用Material Studio 7.0软件构建模型,对不同卤化物所构成的无机铅卤钙钛矿进行了第一性原理分析,选用了点群结构为Pm3m的CsPbX3(X=Cl,Br,I)立方晶胞,并在此基础上优化分析了带隙结构和态密度.通过调整不同的交换泛函得到了同一CsPbBr...运用Material Studio 7.0软件构建模型,对不同卤化物所构成的无机铅卤钙钛矿进行了第一性原理分析,选用了点群结构为Pm3m的CsPbX3(X=Cl,Br,I)立方晶胞,并在此基础上优化分析了带隙结构和态密度.通过调整不同的交换泛函得到了同一CsPbBr3单胞优化后的不同的带隙和体模量.并对同一泛函PBE下CsPbCl3、CsPbBr3、CsPbI3的带隙大小、态密度等结果进行了分析,结果显示,随着晶格参数从Cl到I变大,钙钛矿的体模量和电子带隙会变小,离子性也得到了增强.展开更多
A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice B...A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice Boltzmann flux solver(LBFS)is employed to evaluate the inviscid flux across the cell interfaces.The main advantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through introducing a function which varies from zero to one to control the artificial viscosity.Numerical results indicate that the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simulating both inviscid and viscous flows.展开更多
文摘运用Material Studio 7.0软件构建模型,对不同卤化物所构成的无机铅卤钙钛矿进行了第一性原理分析,选用了点群结构为Pm3m的CsPbX3(X=Cl,Br,I)立方晶胞,并在此基础上优化分析了带隙结构和态密度.通过调整不同的交换泛函得到了同一CsPbBr3单胞优化后的不同的带隙和体模量.并对同一泛函PBE下CsPbCl3、CsPbBr3、CsPbI3的带隙大小、态密度等结果进行了分析,结果显示,随着晶格参数从Cl到I变大,钙钛矿的体模量和电子带隙会变小,离子性也得到了增强.
文摘A discontinuous Galerkin(DG)-based lattice Boltzmann method is employed to solve the Euler and Navier-Stokes equations.Instead of adopting the widely used local Lax-Friedrichs flux and Roe Flux etc.,a hybrid lattice Boltzmann flux solver(LBFS)is employed to evaluate the inviscid flux across the cell interfaces.The main advantage of the hybrid LBFS is its flexibility for capturing both strong shocks and thin boundary layers through introducing a function which varies from zero to one to control the artificial viscosity.Numerical results indicate that the hybrid lattice Boltzmann flux solver behaves very well combining with the high-order DG method when simulating both inviscid and viscous flows.