电网故障易造成并网风电场内风力发电机端电压骤变进而导致风力发电机跳闸,威胁风电场的安全运行。提出一种基于模型预测控制(Model Predictive Control,MPC)的风电场故障穿越有功无功优化控制策略。首先,基于下垂控制,根据并网点(Point...电网故障易造成并网风电场内风力发电机端电压骤变进而导致风力发电机跳闸,威胁风电场的安全运行。提出一种基于模型预测控制(Model Predictive Control,MPC)的风电场故障穿越有功无功优化控制策略。首先,基于下垂控制,根据并网点(Point of Common Coupling,PCC)电压得出故障下的风电场总有功无功参考值。其次,基于风电场的预测状态空间模型与功率-电压灵敏度计算公式,建立以最小化各风力发电机端电压波动为优化目标的基于MPC的优化问题数学模型,求解得到各风力发电机有功无功参考值。在深度故障下,协调控制静止无功发生器(Static Var Generator,SVG)补偿系统无功缺额以维持PCC电压稳定。仿真结果表明,所提控制策略能将PCC点电压与WT端电压快速有效地稳定在可行范围内,提升风电场的故障穿越能力。展开更多
文摘电网故障易造成并网风电场内风力发电机端电压骤变进而导致风力发电机跳闸,威胁风电场的安全运行。提出一种基于模型预测控制(Model Predictive Control,MPC)的风电场故障穿越有功无功优化控制策略。首先,基于下垂控制,根据并网点(Point of Common Coupling,PCC)电压得出故障下的风电场总有功无功参考值。其次,基于风电场的预测状态空间模型与功率-电压灵敏度计算公式,建立以最小化各风力发电机端电压波动为优化目标的基于MPC的优化问题数学模型,求解得到各风力发电机有功无功参考值。在深度故障下,协调控制静止无功发生器(Static Var Generator,SVG)补偿系统无功缺额以维持PCC电压稳定。仿真结果表明,所提控制策略能将PCC点电压与WT端电压快速有效地稳定在可行范围内,提升风电场的故障穿越能力。