Genetic diversity among 5029 accessions representing a proposed Chinese wheat core collection was analyzed using 78 pairs of fluorescent microsatellite (SSR) primers mapped to 21 chromosomes. A stepwise hierarchical s...Genetic diversity among 5029 accessions representing a proposed Chinese wheat core collection was analyzed using 78 pairs of fluorescent microsatellite (SSR) primers mapped to 21 chromosomes. A stepwise hierarchical sampling strategy with priority based on 4×105 SSR data-points was used to construct a core collection from the 23090 initial collections. The core collection consisted of 1160 accessions, including 762 landraces, 348 modern varieties and 50 introduced varieties. The core ac-counts for 23.1% of the 5029 candidate core accessions and 5% of the 23090 initial collections, but retains 94.9% of alleles from the candidate collections and captures 91.5% of the genetic variation in the initial collections. These data indicate that it is possible to maintain genetic diversity in a core collection while retaining fewer accessions than the accepted standard, i.e., 10% of the initial collections captured more than 70% of their genetic diversity. Estimated genetic representation of the core con-structed by preferred sampling (91.5%) is much higher than that by random sampling (79.8%). Both mean genetic richness and genetic diversity indices of the landraces were higher than those of the modern varieties in the core. Structure and principal coordinate analysis revealed that the landraces and the modern varieties were two relatively independent subpopulations. Strong genetic differentiation associated with ecological environments has occurred in the landraces, but was relatively weak in the modern cultivars. In addition, a mini-core collection was constructed, which consisted of 231 accessions with an estimated 70% representation of the genetic variation from the initial collections. The mini-core has been distributed to various research and breeding institutes for detailed phenotyping and breeding of genetic introgression lines.展开更多
Recently, high-entropy alloys(HEAs) or multi-principal-element alloys with unprecedented physical,chemical, and mechanical properties, have been considered as candidate materials used in advanced reactors due to their...Recently, high-entropy alloys(HEAs) or multi-principal-element alloys with unprecedented physical,chemical, and mechanical properties, have been considered as candidate materials used in advanced reactors due to their promising irradiation resistant behavior. Here, we report a new single-phase bodycentered cubic(BCC) structured Ti_2 ZrHfV_(0.5)Mo_(0.2) HEA possessing excellent irradiation resistance, i.e.,scarcely irradiation hardening and abnormal lattice constant reduction after helium-ion irradiation,which is completely different from conventional alloys. This is the first time to report the abnormal XRD phenomenon of metallic alloys and almost no hardening after irradiation. These excellent properties make it to be a potential candidate material used as core components in next-generation nuclear reactors. The particular irradiation tolerance derives from high density lattice vacancies/defects.展开更多
Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes.More than 3000 wheat cultivars have be...Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes.More than 3000 wheat cultivars have been registered,released,and documented since 1949 in China.In this study,a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced.A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94x for each cultivar,and more than 60.92 million SNPs and 2.54 million InDels were captured,based on the Chinese Spring RefSeq genome v1.0.Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes,with distinct genomic regions and phenotypes tar-geted by different breeders across the decades.There are very clear instances illustrating how introduced Italian and otherforeign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars.Importantly,the resequencing data also highlighted significant asymmetric breeding selec-tion among the three sub-genomes:this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes.Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding.Conserved and extended sharing of linkage disequilibrium(LD)blocks was highlighted among pedigree-related cultivars,in which fewer haplotype differences were detected.Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value.Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars,we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation(pyramiding)of bene-ficial haplotypes.Collectively,our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that found展开更多
Colorectal cancer(CRC) is the third most common cancer worldwide and the second most common in tumor-related mortality by Global Cancer Statistics 2020(1). Recent data show that the incidence and mortality of CRC in C...Colorectal cancer(CRC) is the third most common cancer worldwide and the second most common in tumor-related mortality by Global Cancer Statistics 2020(1). Recent data show that the incidence and mortality of CRC in China are increasing(2-4), with the number of new cases and deaths reaching 607,900 and 261,777 in 2019.展开更多
Genetic diversity of 1680 modern varieties in Chinese candidate corecollections was analyzed at 78 SSR loci by fluorescence detection system. A total of 1336 alleleswere detected, of which 1253 alleles could be annota...Genetic diversity of 1680 modern varieties in Chinese candidate corecollections was analyzed at 78 SSR loci by fluorescence detection system. A total of 1336 alleleswere detected, of which 1253 alleles could be annotated into 71 loci. For these 71 loci, the allelesranged from 4 to 44 with an average of 17.6, and the PIC values changed from 0.19 to 0.89 with anaverage of 0.69. (1) In the three genomes of wheat, the average genetic richness was B】A】D, and thegenetic diversity indexes were B】D】A. (2) Among the seven homoeologous groups, the average geneticrichness was 2=7】3】4】6】5】1, and the genetic diversity indexes were 7】3】2】4】6】5】1. As a whole, group7 possessed the highest genetic diversity, while groups 1 and 5 were the lowest. (3) In the 21wheatchromosomes, 7A, 3B and 2D possessed much higher genetic diversity, while 2A, 1B, 4D, 5D and 1D werethe lowest. (4) The highest average genetic diversity index existed in varieties bred in the 1950s,and then it declined continually. However, thechange tendency of genetic diversity among decadeswas not greatly sharp. This was further illustrated by changes of the average genetic distancebetween varieties. In the 1950s it was the largest (0.731). Since the 1960s, it has decreasedgradually (0.711, 0.706, 0.696, 0.695). The genetic base of modern varieties is becoming narrowerand narrower. This should be given enough attention by breeders and policy makers.展开更多
An In2O3 supported nickel catalyst has been prepared by wet chemical reduction with sodium borohydride(NaBH4) as a reducing agent for selective hydrogenation of carbon dioxide to methanol. Highly dispersed Ni species ...An In2O3 supported nickel catalyst has been prepared by wet chemical reduction with sodium borohydride(NaBH4) as a reducing agent for selective hydrogenation of carbon dioxide to methanol. Highly dispersed Ni species with intense Ni-In2O3 interaction and enhanced oxygen vacancies have been achieved.The highly dispersed Ni species serve as the active sites for hydrogen activation and hydrogen spillover.Abundant H adatoms are thereby generated for the oxygen vacancy creation on the In2O3 surface. The enhanced surface oxygen vacancies further lead to improved CO2 conversion. As a result, an effective synergy between the active Ni sites and surface oxygen vacancies on In2O3 causes a superior catalytic performance for CO2 hydrogenation with high methanol selectivity. Carbon monoxide is the only by product detected. The formation of methane can be ignored. When the reaction temperature is lower than 225 ℃,the selectivity of methanol is 100%. It is higher than 64% at the temperature range between 225 ℃ and 275 ℃. The methanol selectivity is still higher than 54% at 300 ℃ with a CO2 conversion of 18.47% and a methanol yield of 0.55 gMeOHg-1cath-1(at 5 MPa). The activity of Ni/In2O3 is higher than most of the reported In2O3-based catalysts.展开更多
By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as red...By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight.To achieve this purpose,a two-step procedure is developed to design and optimize the innovative structures.Initially,the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths.Afterwards,the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method.And lattice-based optimization is performed to obtain the optimal crosssection area of the lattice structures.Finally,two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework.The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs.展开更多
Non-alcohol-associated fatty liver/steatohepatitis(NAFL/NASH)has become the leading cause of liver disease worldwide.NASH,an advanced form of NAFL,can be progressive and more susceptible to developing cirrhosis and he...Non-alcohol-associated fatty liver/steatohepatitis(NAFL/NASH)has become the leading cause of liver disease worldwide.NASH,an advanced form of NAFL,can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma.Currently,lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis.While there are stll limited appropriate drugs specifically to treat NAFL/NASH,growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets.In this review,we discussed recent developments in etiology and prospective therapeutic targets,as well as pharmacological candidates in pre/clinical trials and patents,with a focus on diabetes,hepatic lipid metabolism,inflammation,and fibrosis.Importantly,growing evidence elucidates that the disruption of the gut-liver axis and microbederived metabolites drive the pathogenesis of NAFL/NASH.Extracellular vesicles(EVs)act as a signaling mediator,resulting in lipid accumulation,macrophage and hepatic stellate cell activation,further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH.Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH.Finally,other mechanisms,such as cell therapy and genetic approaches,also have enormous therapeutic potential.Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.展开更多
Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In...Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turn- over of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREMI. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.展开更多
Iron(Fe)deficiency is prevalent in plants grown in neutral or alkaline soil.Plants have evolved sophisticated mechanisms that regulate Fe homeostasis,ensuring survival.In Arabidopsis,FER-LIKE IRON DEFICIENCY-INDUCED T...Iron(Fe)deficiency is prevalent in plants grown in neutral or alkaline soil.Plants have evolved sophisticated mechanisms that regulate Fe homeostasis,ensuring survival.In Arabidopsis,FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR(FIT)is a crucial regulator of Fe-deficiency response.FIT is activated indirectly by basic helix-loop-helix(bHLH)IVc transcription factors(TFs)under Fed eficiency;how ever,it remains unclear which protein(s)act as the linker to mediate the activation of FIT by bHLH IVc TFs.In this study,we characterize the functions of bHLH121 and demonstrate that it directly associates with the FIT promoter.We found that loss-of-function mutations of bHLH121 cause severe Fedeficiency symptoms,reduced Feaccum ulation,and disrupted expression of genes associated with Fehomeostasis.Genetic analysis showed that FIT is epistatic to bHLH121 and FIT overexpression partially rescues the bhlh121 mutant.Further investigations revealed that bHLH IVc TFs interact with and promote nuclear accumulation of bHLH121.We demonstrated that bHLH121 has DNA-binding activity and can bind the prom oters of the FIT and bHLHlb genes,but we did not find that it has either direct transcriptional activation or repression activity tow ard these genes.Meanw hile,we found that bHLH121 functions downstream of and is a direct target of bHLH IVc TFs,and its expression is induced by Fe deficiency in a bHLH IV c-dependent manner.Taken together,these results establish that bHLH121 functions together with bHLH IVc TFs to positively regulate the expression of FIT and thus plays a pivotal role in maintaining Fe homeostasis in Arabidopsis.展开更多
Many human genetic diseases,including Hutchinson-Gilford progeria syndrome(HGPS),are caused by single point mutations.HGPS is a rare disorder that causes premature aging and is usually caused by a de novo point mutati...Many human genetic diseases,including Hutchinson-Gilford progeria syndrome(HGPS),are caused by single point mutations.HGPS is a rare disorder that causes premature aging and is usually caused by a de novo point mutation in the LMNA gene.Base editors(BEs)composed of a cytidine deaminase fused to CRISPR/Cas9 nickase are highly efficient at inducing C to T base conversions in a programmable manner and can be used to generate animal disease models with single amino-acid substitutions.Here,we generated the first HGPS monkey model by delivering a BE mRNA and guide RNA(gRNA)targeting the LMNA gene via microinjection into monkey zygotes.Five out of six newborn monkeys carried the mutation specifically at the target site.HGPS monkeys expressed the toxic form of lamin A,progerin,and recapitulated the typical HGPS phenotypes including growth retardation,bone alterations,and vascular abnormalities.Thus,this monkey model genetically and clinically mimics HGPS in humans,demonstrating that the BE system can efficiently and accurately generate patient-specific disease models in non-human primates.展开更多
The results of TEM investigation indicate that magnetite and maghemite are the major ferromagnetic minerals in loess-paleosol sequences. Primary magnetite has the similar morphology and surface characteristics as eoli...The results of TEM investigation indicate that magnetite and maghemite are the major ferromagnetic minerals in loess-paleosol sequences. Primary magnetite has the similar morphology and surface characteristics as eolian detrital particles. The magnetite can be classified into two categories, high-titanium and low-titanium, which may be the indicators of magmatic rocks and metamorphic rocks, respectively. TEM investigation at nanometer scale shows that primary detrital magnetite of micron scale had been partially weathered to maghemite of 5~20 nanometer during the pedogenic process, which maintain the pseudomorphism of the aeolian debris. Some chlorite particles were also weathered to nanometer scale magnetite or maghemite in the pedogenic process. So weathering of the two minerals leads to formation of superparamagnetism, which may be the important mechanism of magnetic-susceptibility increase in paleosols. The magnetite or maghemite resulting from the weathering of chlorite contains a small amount of P and S, which is the signal of microbe-mineral interaction, and indicates that microbes may play a certain role in chlorite weathering and formation of superparamagnetic particles.展开更多
Hepatic ischemia/reperfusion injury(HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. He...Hepatic ischemia/reperfusion injury(HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. Herein, we investigated the potential contribution of gut microbes to HIRI.Ischemia/reperfusion surgery was performed to establish a murine model of HIRI. 16 S r RNA gene sequencing and metabolomics were used for microbial analysis. Transcriptomics and proteomics analysis were employed to study the host cell responses. Our results establish HIRI was significantly increased when surgery occurred in the evening(ZT12, 20:00) when compared with the morning(ZT0, 08:00);however, antibiotic pretreatment reduced this diurnal variation. The abundance of a microbial metabolite3,4-dihydroxyphenylpropionic acid was significantly higher in ZT0 when compared with ZT12 in the gut and this compound significantly protected mice against HIRI. Furthermore, 3,4-dihydroxyphenylpropionic acid suppressed the macrophage pro-inflammatory response in vivo and in vitro. This metabolite inhibits histone deacetylase activity by reducing its phosphorylation. Histone deacetylase inhibition suppressed macrophage pro-inflammatory activation and diminished the diurnal variation of HIRI. Our findings revealed a novel protective microbial metabolite against HIRI in mice. The potential underlying mechanism was at least in part, via 3,4-dihydroxyphenylpropionic acid-dependent immune regulation and histone deacetylase(HDAC) inhibition in macrophages.展开更多
This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compos...This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structu展开更多
The Internet of Things(IoT)1,2 employs a large number of spatially distributed wireless sensors to monitor physical environments,e.g.,temperature,humidity,and air pressure,and has many applications,including environme...The Internet of Things(IoT)1,2 employs a large number of spatially distributed wireless sensors to monitor physical environments,e.g.,temperature,humidity,and air pressure,and has many applications,including environmental monitoring3,health care monitoring4,smart cities5,and precision agriculture.A wireless sensor can collect,analyze,and transmit measurements of its environment1,2.Currently,wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances.Being immune to the electromagnetic interference,optical sensors provide a significant advantage in harsh environments6.Furthermore,by introducing optical resonance to enhance light–matter interactions,optical sensors based on resonators exhibit small footprints,extreme sensitivity,and versatile functionalities7,8,which can significantly enhance the capability and flexibility of wireless sensors.Here we provide the first demonstration of a wireless photonic sensor node based on a whisperinggallery-mode(WGM)optical resonator,in which light propagates along the circular rim of such a structure like a sphere,a disk,or a toroid by continuous total internal reflection.The sensor node is controlled via a customized iOS app.Its performance was studied in two practical scenarios:(1)real-time measurement of the air temperature over 12 h and(2)aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone.Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.展开更多
Tetrahydrofuran(THF) extract of coal tar pitch(CTP) was used instead of blending CTP with pretreated pyrolysis fuel oil to prepare an isotropic pitch precursor with excellent spinnability for general-purpose carbon fi...Tetrahydrofuran(THF) extract of coal tar pitch(CTP) was used instead of blending CTP with pretreated pyrolysis fuel oil to prepare an isotropic pitch precursor with excellent spinnability for general-purpose carbon fibre through bromination-dehydrobromination. The feasibility and effectiveness of synthesising an isotropic pitch precursor derived from THF-soluble(CTP-THFs) is demonstrated in this study.The results show that CTP-THFs contains more light components than CTP;CTP-THFs and CTP monomer proportions were 62.52% and 45.32%, respectively. However, based on comparisons of CTP-THFsBr0 and CTPBr0 characterisations, CTP-THFs exhibits better polycondensation than CTP. Bromination-dehydrobro mination promotes polycondensation of pitch precursors, leading to greater carbon aromaticity in CTP-THFsBr5, CTP-THFsBr10, and CTP-THFsBr15 than that in CTP-THFsBr0 and CTPBr0. CTP-THFsBr5 and CTP-THFsBr10 have excellent spinnability even with softening points as high as 230 ℃. The pericondensed carbon and carbon aromaticity of CTP-THFsBr5 and CTP-THFsBr10 are high owing to the higher degree of polycondensation;however, they still possess a more linear molecular structure. The as-prepared carbon fibre exhibits homogeneity and uniformity, and the mechanical performance is comparable with that of commercial general-purpose carbon fibre products.展开更多
The objective of this study was to evaluate the effects of wheat variety, food processing, and milling method on antioxidant properties. Black wheat variety Heibaoshi 1 had the highest total phenolic content(659.8 μg...The objective of this study was to evaluate the effects of wheat variety, food processing, and milling method on antioxidant properties. Black wheat variety Heibaoshi 1 had the highest total phenolic content(659.8 μg gallic acid equivalents g-1), total flavonoid content(319.3 μg rutin equivalents g-1), and antioxidant activity, whereas light purple wheat variety Shandongzimai 1 had the lowest total flavonoid content(236.2 μg rutin equivalents g-1) and antioxidant activity. Whole wheat flour and partially debranned grain flour had significantly higher total phenolic contents, total flavonoid contents, and antioxidant activity than refined flour(P < 0.05). Compared with flour, total phenolic contents, total flavonoid contents and antioxidant activity decreased in noodles and steamed bread, whereas noodles had slightly higher total phenolic and flavonoid content than steamed bread. Antioxidant activities(by ferric reducing ability of plasma assay) of steamed bread made from whole wheat flour, partially debranned grain flour, and refined flour were 23.5%, 21.1%, and 31.6% lower, respectively, than the corresponding values of flour. These results suggested that black whole wheat flour and partially debranned grain flour are beneficial to human health.展开更多
Diversity surveys of crop germplasm are important for gaining insights into the genomic basis for plant architecture and grain yield improvement,which is still poorly understood in wheat.In this study,we exome sequenc...Diversity surveys of crop germplasm are important for gaining insights into the genomic basis for plant architecture and grain yield improvement,which is still poorly understood in wheat.In this study,we exome sequenced 287 wheat accessions that were collected in the past 100 years.Population genetics analysis identified that 6.7%of the wheat genome falls within the selective sweeps between landraces and cultivars,which harbors the genes known for yield improvement.These regions were asymmetrically distributed on the A and B subgenomes with regulatory genes being favorably selected.Genome-wide association study(GWAS)identified genomic loci associated with traits for yield potential,and two underlying genes,TaARF12 encoding an auxin response factor and TaDEP1 encoding the G-proteinγ-subunit,were located and characterized to pleiotropically regulate both plant height and grain weight.Elite single-nucleotide haplotypes with increased allele frequency in cultivars relative to the landraces were identified and found to have accumulated over the course of breeding.Interestingly,we found that TaARF12 and TaDEP1 function in epistasis with the classical plant height Rht-1 locus,leading to propose a“Green Revolution”-based working model for historical wheat breeding.Collectively,our study identifies selection signatures that fine-tune the gibberellin pathway during modern wheat breeding and provides a wealth of genomic diversity resources for the wheat research community.展开更多
In this paper, an unstructured, collocated finite volume method for solvingthe Navier-Stokes equations was developed by virtue of auxiliary points. The derivatives weredetermined by the Gauss theorem. The proposed met...In this paper, an unstructured, collocated finite volume method for solvingthe Navier-Stokes equations was developed by virtue of auxiliary points. The derivatives weredetermined by the Gauss theorem. The proposed method could provide control volumes with arbitrarygeometry and preserve the second-order accuracy even if highly distorted grids are used. Althougharbitrary number of cell faces can be used, the hybrid quadrilateral/triangular grids are moredesirable for the simplicity of implementation and applications to engineering problems. Thepressure-velocity coupling was treated using a SIMPLE-like algorithm. The Generalized MinimumResidual (GMRES) method with the Incomplete LU (ILU) preconditioner was used to solve linearequations. Four test cases were studied for validating the proposed method. In using this method,grid quality is not important. Thus, engineers can pay mostly attention to physical mechanism ofproblems. Turbulence models can be simply integrated and the method can be straightforwardlyextended to treat three-dimensional problems.展开更多
Objective: To understand the current situation of prehospital first aid knowledge, attitude and behavior of university students in Jingzhou City. Methods: A prehospital first aid knowledge questionnaire and the conven...Objective: To understand the current situation of prehospital first aid knowledge, attitude and behavior of university students in Jingzhou City. Methods: A prehospital first aid knowledge questionnaire and the convenience sampling method were used to survey 307 university students in Jingzhou City. Results: The mean score of prehospital first aid knowledge of university students in Jingzhou City was 12.85 ± 2.643, the mean score of attitude was 50.73 ± 4.114, and the mean score of behavior was 39.05 ± 8.898;There was a statistically significant difference in the scores of prehospital first aid knowledge, attitude, and behavior of university students depending on whether or not they had received prehospital first aid training (P P Conclusion: Jingzhou University students have a positive attitude toward pre-hospital first aid, but the knowledge level and behavior are low, which suggests that the government, society and the school should create good conditions to promote the improvement of pre-hospital first aid knowledge and ability.展开更多
基金the National Basic Research Program of China (Grant Nos. G19980202 and 2004CB117202)
文摘Genetic diversity among 5029 accessions representing a proposed Chinese wheat core collection was analyzed using 78 pairs of fluorescent microsatellite (SSR) primers mapped to 21 chromosomes. A stepwise hierarchical sampling strategy with priority based on 4×105 SSR data-points was used to construct a core collection from the 23090 initial collections. The core collection consisted of 1160 accessions, including 762 landraces, 348 modern varieties and 50 introduced varieties. The core ac-counts for 23.1% of the 5029 candidate core accessions and 5% of the 23090 initial collections, but retains 94.9% of alleles from the candidate collections and captures 91.5% of the genetic variation in the initial collections. These data indicate that it is possible to maintain genetic diversity in a core collection while retaining fewer accessions than the accepted standard, i.e., 10% of the initial collections captured more than 70% of their genetic diversity. Estimated genetic representation of the core con-structed by preferred sampling (91.5%) is much higher than that by random sampling (79.8%). Both mean genetic richness and genetic diversity indices of the landraces were higher than those of the modern varieties in the core. Structure and principal coordinate analysis revealed that the landraces and the modern varieties were two relatively independent subpopulations. Strong genetic differentiation associated with ecological environments has occurred in the landraces, but was relatively weak in the modern cultivars. In addition, a mini-core collection was constructed, which consisted of 231 accessions with an estimated 70% representation of the genetic variation from the initial collections. The mini-core has been distributed to various research and breeding institutes for detailed phenotyping and breeding of genetic introgression lines.
基金supported by the National Natural Science Foundation of China (Nos. 11605271, 51471044, 51525401, 51771201 and 51401208)Support Plan for Innovation of High-level Talents (Top and Leading Talents, 2015R013)Support Plan for Innovation of High-level Talents (Youth Technology Stars, 2016RQ005)
文摘Recently, high-entropy alloys(HEAs) or multi-principal-element alloys with unprecedented physical,chemical, and mechanical properties, have been considered as candidate materials used in advanced reactors due to their promising irradiation resistant behavior. Here, we report a new single-phase bodycentered cubic(BCC) structured Ti_2 ZrHfV_(0.5)Mo_(0.2) HEA possessing excellent irradiation resistance, i.e.,scarcely irradiation hardening and abnormal lattice constant reduction after helium-ion irradiation,which is completely different from conventional alloys. This is the first time to report the abnormal XRD phenomenon of metallic alloys and almost no hardening after irradiation. These excellent properties make it to be a potential candidate material used as core components in next-generation nuclear reactors. The particular irradiation tolerance derives from high density lattice vacancies/defects.
基金the Key Research and Development Program of China(2016YFD0100302)the Central Public-interest Scientific Institution Basal Research Fund(Y2017PT39)the CAAS-Innovation Team Program(CAAS-XTCX2018020).
文摘Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes.More than 3000 wheat cultivars have been registered,released,and documented since 1949 in China.In this study,a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced.A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94x for each cultivar,and more than 60.92 million SNPs and 2.54 million InDels were captured,based on the Chinese Spring RefSeq genome v1.0.Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes,with distinct genomic regions and phenotypes tar-geted by different breeders across the decades.There are very clear instances illustrating how introduced Italian and otherforeign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars.Importantly,the resequencing data also highlighted significant asymmetric breeding selec-tion among the three sub-genomes:this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes.Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding.Conserved and extended sharing of linkage disequilibrium(LD)blocks was highlighted among pedigree-related cultivars,in which fewer haplotype differences were detected.Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value.Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars,we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation(pyramiding)of bene-ficial haplotypes.Collectively,our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that found
基金supported by the National Natural Science Foundation of China(No.81872481)the Provincial Key R&D Program of Zhejiang Province(No.2021C03125)。
文摘Colorectal cancer(CRC) is the third most common cancer worldwide and the second most common in tumor-related mortality by Global Cancer Statistics 2020(1). Recent data show that the incidence and mortality of CRC in China are increasing(2-4), with the number of new cases and deaths reaching 607,900 and 261,777 in 2019.
文摘Genetic diversity of 1680 modern varieties in Chinese candidate corecollections was analyzed at 78 SSR loci by fluorescence detection system. A total of 1336 alleleswere detected, of which 1253 alleles could be annotated into 71 loci. For these 71 loci, the allelesranged from 4 to 44 with an average of 17.6, and the PIC values changed from 0.19 to 0.89 with anaverage of 0.69. (1) In the three genomes of wheat, the average genetic richness was B】A】D, and thegenetic diversity indexes were B】D】A. (2) Among the seven homoeologous groups, the average geneticrichness was 2=7】3】4】6】5】1, and the genetic diversity indexes were 7】3】2】4】6】5】1. As a whole, group7 possessed the highest genetic diversity, while groups 1 and 5 were the lowest. (3) In the 21wheatchromosomes, 7A, 3B and 2D possessed much higher genetic diversity, while 2A, 1B, 4D, 5D and 1D werethe lowest. (4) The highest average genetic diversity index existed in varieties bred in the 1950s,and then it declined continually. However, thechange tendency of genetic diversity among decadeswas not greatly sharp. This was further illustrated by changes of the average genetic distancebetween varieties. In the 1950s it was the largest (0.731). Since the 1960s, it has decreasedgradually (0.711, 0.706, 0.696, 0.695). The genetic base of modern varieties is becoming narrowerand narrower. This should be given enough attention by breeders and policy makers.
基金the National Natural Science Foundation of China(No.21536008 and 21621004)。
文摘An In2O3 supported nickel catalyst has been prepared by wet chemical reduction with sodium borohydride(NaBH4) as a reducing agent for selective hydrogenation of carbon dioxide to methanol. Highly dispersed Ni species with intense Ni-In2O3 interaction and enhanced oxygen vacancies have been achieved.The highly dispersed Ni species serve as the active sites for hydrogen activation and hydrogen spillover.Abundant H adatoms are thereby generated for the oxygen vacancy creation on the In2O3 surface. The enhanced surface oxygen vacancies further lead to improved CO2 conversion. As a result, an effective synergy between the active Ni sites and surface oxygen vacancies on In2O3 causes a superior catalytic performance for CO2 hydrogenation with high methanol selectivity. Carbon monoxide is the only by product detected. The formation of methane can be ignored. When the reaction temperature is lower than 225 ℃,the selectivity of methanol is 100%. It is higher than 64% at the temperature range between 225 ℃ and 275 ℃. The methanol selectivity is still higher than 54% at 300 ℃ with a CO2 conversion of 18.47% and a methanol yield of 0.55 gMeOHg-1cath-1(at 5 MPa). The activity of Ni/In2O3 is higher than most of the reported In2O3-based catalysts.
基金supported by National Key Research and Development Program(No.2017YFB1102800)Key Project of NSFC(Nos.51790171 and 51761145111)NSFC for Excellent Young Scholars(No.11722219)。
文摘By integrating topology optimization and lattice-based optimization,a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight.To achieve this purpose,a two-step procedure is developed to design and optimize the innovative structures.Initially,the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths.Afterwards,the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method.And lattice-based optimization is performed to obtain the optimal crosssection area of the lattice structures.Finally,two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework.The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs.
基金This work was supported by the Major Program of National Natural Science Foundation of China(81991525)Key R&D Program of Shandong Province(2020CXGC010503)This work was also supported by grants from the National Institutes of Health(R00AA026648 to K.L.P.).
文摘Non-alcohol-associated fatty liver/steatohepatitis(NAFL/NASH)has become the leading cause of liver disease worldwide.NASH,an advanced form of NAFL,can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma.Currently,lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis.While there are stll limited appropriate drugs specifically to treat NAFL/NASH,growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets.In this review,we discussed recent developments in etiology and prospective therapeutic targets,as well as pharmacological candidates in pre/clinical trials and patents,with a focus on diabetes,hepatic lipid metabolism,inflammation,and fibrosis.Importantly,growing evidence elucidates that the disruption of the gut-liver axis and microbederived metabolites drive the pathogenesis of NAFL/NASH.Extracellular vesicles(EVs)act as a signaling mediator,resulting in lipid accumulation,macrophage and hepatic stellate cell activation,further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH.Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH.Finally,other mechanisms,such as cell therapy and genetic approaches,also have enormous therapeutic potential.Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
文摘Remorins are plant-specific membrane-associated proteins and were proposed to play crucial roles in plant-pathogen interactions. However, little is known about how pathogens counter remorin-mediated host responses. In this study, by quantitative whole-proteome analysis we found that the remorin protein (NbREM1) is downregulated early in Rice stripe virus (RSV) infection. We further discovered that the turn- over of NbREM1 is regulated by S-acylation modification and its degradation is mediated mainly through the autophagy pathway. Interestingly, RSV can interfere with the S-acylation of NbREM1, which is required to negatively regulate RSV infection by restricting virus cell-to-cell trafficking. The disruption of NbREM1 S-acylation affects its targeting to the plasma membrane microdomain, and the resulting accumulation of non-targeted NbREM1 is subjected to autophagic degradation, causing downregulation of NbREMI. Moreover, we found that RSV-encoded movement protein, NSvc4, alone can interfere with NbREM1 S-acylation through binding with the C-terminal domain of NbREM1 the S-acylation of OsREM1.4, the homologous remorin of NbREM1, and thus remorin-mediated defense against RSV in rice, the original host of RSV, indicating that downregulation of the remorin protein level by interfering with its S-acylation is a common strategy adopted by RSV to overcome remorin-mediated inhibition of virus movement.
基金This work was supported by the Applied Basic Research Project of Yunnan Province(2018FA011 to G.L.).
文摘Iron(Fe)deficiency is prevalent in plants grown in neutral or alkaline soil.Plants have evolved sophisticated mechanisms that regulate Fe homeostasis,ensuring survival.In Arabidopsis,FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR(FIT)is a crucial regulator of Fe-deficiency response.FIT is activated indirectly by basic helix-loop-helix(bHLH)IVc transcription factors(TFs)under Fed eficiency;how ever,it remains unclear which protein(s)act as the linker to mediate the activation of FIT by bHLH IVc TFs.In this study,we characterize the functions of bHLH121 and demonstrate that it directly associates with the FIT promoter.We found that loss-of-function mutations of bHLH121 cause severe Fedeficiency symptoms,reduced Feaccum ulation,and disrupted expression of genes associated with Fehomeostasis.Genetic analysis showed that FIT is epistatic to bHLH121 and FIT overexpression partially rescues the bhlh121 mutant.Further investigations revealed that bHLH IVc TFs interact with and promote nuclear accumulation of bHLH121.We demonstrated that bHLH121 has DNA-binding activity and can bind the prom oters of the FIT and bHLHlb genes,but we did not find that it has either direct transcriptional activation or repression activity tow ard these genes.Meanw hile,we found that bHLH121 functions downstream of and is a direct target of bHLH IVc TFs,and its expression is induced by Fe deficiency in a bHLH IV c-dependent manner.Taken together,these results establish that bHLH121 functions together with bHLH IVc TFs to positively regulate the expression of FIT and thus plays a pivotal role in maintaining Fe homeostasis in Arabidopsis.
基金We are grate to Xinglong Chen,Ziyi Zhao,Baohong Tian and all members from animal facility of the Yunnan Key Laboratory of Primate Biomedical Research for excellent animal welfare and husbandry.We thank Jing He for her technical assistance.The author would like to thank Gabriella Rudy for constructive criticism of the manuscript.This work was supported by the National Key Research and Development Program(2016YFA0101401)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16010100)+2 种基金the National Key Research and Development Program(2018YFA0801403,2018YFC2000100)the National Natural Science Foundation of China(Grant Nos.81921006,81625009,91749202,91949209,81822018,91749123,81671377)Youth Innovation Promotion Association of CAS(2016093).
文摘Many human genetic diseases,including Hutchinson-Gilford progeria syndrome(HGPS),are caused by single point mutations.HGPS is a rare disorder that causes premature aging and is usually caused by a de novo point mutation in the LMNA gene.Base editors(BEs)composed of a cytidine deaminase fused to CRISPR/Cas9 nickase are highly efficient at inducing C to T base conversions in a programmable manner and can be used to generate animal disease models with single amino-acid substitutions.Here,we generated the first HGPS monkey model by delivering a BE mRNA and guide RNA(gRNA)targeting the LMNA gene via microinjection into monkey zygotes.Five out of six newborn monkeys carried the mutation specifically at the target site.HGPS monkeys expressed the toxic form of lamin A,progerin,and recapitulated the typical HGPS phenotypes including growth retardation,bone alterations,and vascular abnormalities.Thus,this monkey model genetically and clinically mimics HGPS in humans,demonstrating that the BE system can efficiently and accurately generate patient-specific disease models in non-human primates.
基金supported by the Outstanding Overseas Chinese Scholars Fund of the Chinese Academy of Sciences(Grant No.2003-1-7)the National Natural Science Foundation of China(Grant Nos.40072017,40273002 and 40173003)the National Basic Research Development Program(Grant No.G1999043401).
文摘The results of TEM investigation indicate that magnetite and maghemite are the major ferromagnetic minerals in loess-paleosol sequences. Primary magnetite has the similar morphology and surface characteristics as eolian detrital particles. The magnetite can be classified into two categories, high-titanium and low-titanium, which may be the indicators of magmatic rocks and metamorphic rocks, respectively. TEM investigation at nanometer scale shows that primary detrital magnetite of micron scale had been partially weathered to maghemite of 5~20 nanometer during the pedogenic process, which maintain the pseudomorphism of the aeolian debris. Some chlorite particles were also weathered to nanometer scale magnetite or maghemite in the pedogenic process. So weathering of the two minerals leads to formation of superparamagnetism, which may be the important mechanism of magnetic-susceptibility increase in paleosols. The magnetite or maghemite resulting from the weathering of chlorite contains a small amount of P and S, which is the signal of microbe-mineral interaction, and indicates that microbes may play a certain role in chlorite weathering and formation of superparamagnetic particles.
基金supported by the National Natural Science Foundation of China(81873926,32071124)Natural Science Funds for Distinguished Young Scholar of Guangdong province grant(2016A030306043,China)to Peng Chen+2 种基金Grants from the NSFCGuangdong Joint Foundation of China(U1601225)Natural Science Foundation of China(81971895)Special Support Plan for Outstanding Talents of Guangdong Province(2019JC05Y340,China)to Yong Jiang。
文摘Hepatic ischemia/reperfusion injury(HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. Herein, we investigated the potential contribution of gut microbes to HIRI.Ischemia/reperfusion surgery was performed to establish a murine model of HIRI. 16 S r RNA gene sequencing and metabolomics were used for microbial analysis. Transcriptomics and proteomics analysis were employed to study the host cell responses. Our results establish HIRI was significantly increased when surgery occurred in the evening(ZT12, 20:00) when compared with the morning(ZT0, 08:00);however, antibiotic pretreatment reduced this diurnal variation. The abundance of a microbial metabolite3,4-dihydroxyphenylpropionic acid was significantly higher in ZT0 when compared with ZT12 in the gut and this compound significantly protected mice against HIRI. Furthermore, 3,4-dihydroxyphenylpropionic acid suppressed the macrophage pro-inflammatory response in vivo and in vitro. This metabolite inhibits histone deacetylase activity by reducing its phosphorylation. Histone deacetylase inhibition suppressed macrophage pro-inflammatory activation and diminished the diurnal variation of HIRI. Our findings revealed a novel protective microbial metabolite against HIRI in mice. The potential underlying mechanism was at least in part, via 3,4-dihydroxyphenylpropionic acid-dependent immune regulation and histone deacetylase(HDAC) inhibition in macrophages.
基金supported by the MOST of China (Grant No. 2016YFC0600403)the National Natural Science Foundation of China (Grant No. 41330206)
文摘This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structu
文摘The Internet of Things(IoT)1,2 employs a large number of spatially distributed wireless sensors to monitor physical environments,e.g.,temperature,humidity,and air pressure,and has many applications,including environmental monitoring3,health care monitoring4,smart cities5,and precision agriculture.A wireless sensor can collect,analyze,and transmit measurements of its environment1,2.Currently,wireless sensors used in the IoT are predominately based on electronic devices that may suffer from electromagnetic interference in many circumstances.Being immune to the electromagnetic interference,optical sensors provide a significant advantage in harsh environments6.Furthermore,by introducing optical resonance to enhance light–matter interactions,optical sensors based on resonators exhibit small footprints,extreme sensitivity,and versatile functionalities7,8,which can significantly enhance the capability and flexibility of wireless sensors.Here we provide the first demonstration of a wireless photonic sensor node based on a whisperinggallery-mode(WGM)optical resonator,in which light propagates along the circular rim of such a structure like a sphere,a disk,or a toroid by continuous total internal reflection.The sensor node is controlled via a customized iOS app.Its performance was studied in two practical scenarios:(1)real-time measurement of the air temperature over 12 h and(2)aerial mapping of the temperature distribution using a sensor node mounted on an unmanned drone.Our work demonstrates the capability of WGM optical sensors in practical applications and may pave the way for the large-scale deployment of WGM sensors in the IoT.
基金the financial support provided by the National Natural Science Foundation of China (22008254)the Fundamental Research Funds for the Central Universities (2020XJHH01)+1 种基金the National Training Program of Innovation and Entrepreneurship for Undergraduates (C202003309)China University of Mining and Technology (Beijing) Yueqi Outstanding Scholar Project (2020JCB02)。
文摘Tetrahydrofuran(THF) extract of coal tar pitch(CTP) was used instead of blending CTP with pretreated pyrolysis fuel oil to prepare an isotropic pitch precursor with excellent spinnability for general-purpose carbon fibre through bromination-dehydrobromination. The feasibility and effectiveness of synthesising an isotropic pitch precursor derived from THF-soluble(CTP-THFs) is demonstrated in this study.The results show that CTP-THFs contains more light components than CTP;CTP-THFs and CTP monomer proportions were 62.52% and 45.32%, respectively. However, based on comparisons of CTP-THFsBr0 and CTPBr0 characterisations, CTP-THFs exhibits better polycondensation than CTP. Bromination-dehydrobro mination promotes polycondensation of pitch precursors, leading to greater carbon aromaticity in CTP-THFsBr5, CTP-THFsBr10, and CTP-THFsBr15 than that in CTP-THFsBr0 and CTPBr0. CTP-THFsBr5 and CTP-THFsBr10 have excellent spinnability even with softening points as high as 230 ℃. The pericondensed carbon and carbon aromaticity of CTP-THFsBr5 and CTP-THFsBr10 are high owing to the higher degree of polycondensation;however, they still possess a more linear molecular structure. The as-prepared carbon fibre exhibits homogeneity and uniformity, and the mechanical performance is comparable with that of commercial general-purpose carbon fibre products.
基金funded by the Special Funds for Industry System (CARS-03)Science and Technology Support Program (2012BAD04B07-03)
文摘The objective of this study was to evaluate the effects of wheat variety, food processing, and milling method on antioxidant properties. Black wheat variety Heibaoshi 1 had the highest total phenolic content(659.8 μg gallic acid equivalents g-1), total flavonoid content(319.3 μg rutin equivalents g-1), and antioxidant activity, whereas light purple wheat variety Shandongzimai 1 had the lowest total flavonoid content(236.2 μg rutin equivalents g-1) and antioxidant activity. Whole wheat flour and partially debranned grain flour had significantly higher total phenolic contents, total flavonoid contents, and antioxidant activity than refined flour(P < 0.05). Compared with flour, total phenolic contents, total flavonoid contents and antioxidant activity decreased in noodles and steamed bread, whereas noodles had slightly higher total phenolic and flavonoid content than steamed bread. Antioxidant activities(by ferric reducing ability of plasma assay) of steamed bread made from whole wheat flour, partially debranned grain flour, and refined flour were 23.5%, 21.1%, and 31.6% lower, respectively, than the corresponding values of flour. These results suggested that black whole wheat flour and partially debranned grain flour are beneficial to human health.
基金We acknowledge the financial support from the National Key Research and Development Program of China(2016YFD0101004,2016YFD0100300)National Natural Science Foundation of China(31830982,91731305,31661143007)CAAS Agricultural Science and Technology Innovation Program,China(CAAS-ZDRW202002).We thank the bioinformatics facility at the Institute of Crop Science,CAAS,China for providing the computing support.
文摘Diversity surveys of crop germplasm are important for gaining insights into the genomic basis for plant architecture and grain yield improvement,which is still poorly understood in wheat.In this study,we exome sequenced 287 wheat accessions that were collected in the past 100 years.Population genetics analysis identified that 6.7%of the wheat genome falls within the selective sweeps between landraces and cultivars,which harbors the genes known for yield improvement.These regions were asymmetrically distributed on the A and B subgenomes with regulatory genes being favorably selected.Genome-wide association study(GWAS)identified genomic loci associated with traits for yield potential,and two underlying genes,TaARF12 encoding an auxin response factor and TaDEP1 encoding the G-proteinγ-subunit,were located and characterized to pleiotropically regulate both plant height and grain weight.Elite single-nucleotide haplotypes with increased allele frequency in cultivars relative to the landraces were identified and found to have accumulated over the course of breeding.Interestingly,we found that TaARF12 and TaDEP1 function in epistasis with the classical plant height Rht-1 locus,leading to propose a“Green Revolution”-based working model for historical wheat breeding.Collectively,our study identifies selection signatures that fine-tune the gibberellin pathway during modern wheat breeding and provides a wealth of genomic diversity resources for the wheat research community.
文摘In this paper, an unstructured, collocated finite volume method for solvingthe Navier-Stokes equations was developed by virtue of auxiliary points. The derivatives weredetermined by the Gauss theorem. The proposed method could provide control volumes with arbitrarygeometry and preserve the second-order accuracy even if highly distorted grids are used. Althougharbitrary number of cell faces can be used, the hybrid quadrilateral/triangular grids are moredesirable for the simplicity of implementation and applications to engineering problems. Thepressure-velocity coupling was treated using a SIMPLE-like algorithm. The Generalized MinimumResidual (GMRES) method with the Incomplete LU (ILU) preconditioner was used to solve linearequations. Four test cases were studied for validating the proposed method. In using this method,grid quality is not important. Thus, engineers can pay mostly attention to physical mechanism ofproblems. Turbulence models can be simply integrated and the method can be straightforwardlyextended to treat three-dimensional problems.
文摘Objective: To understand the current situation of prehospital first aid knowledge, attitude and behavior of university students in Jingzhou City. Methods: A prehospital first aid knowledge questionnaire and the convenience sampling method were used to survey 307 university students in Jingzhou City. Results: The mean score of prehospital first aid knowledge of university students in Jingzhou City was 12.85 ± 2.643, the mean score of attitude was 50.73 ± 4.114, and the mean score of behavior was 39.05 ± 8.898;There was a statistically significant difference in the scores of prehospital first aid knowledge, attitude, and behavior of university students depending on whether or not they had received prehospital first aid training (P P Conclusion: Jingzhou University students have a positive attitude toward pre-hospital first aid, but the knowledge level and behavior are low, which suggests that the government, society and the school should create good conditions to promote the improvement of pre-hospital first aid knowledge and ability.