AIM: To investigate the functional, morphological changes of the gut barrier during the restitution process after hemorrhagic shock, and the regional differences of the large intestine and small intestine in response...AIM: To investigate the functional, morphological changes of the gut barrier during the restitution process after hemorrhagic shock, and the regional differences of the large intestine and small intestine in response to ischemia/ reperfusion injury. METHODS: Forty-seven Sprague-Dawley rats with body weight of 250-300 g were divided into two groups: control group (sham shock n = 5) and experimental group (n = 42). Experimental group was further divided into six groups (n = 7 each) according to different time points after the hemorrhagic shock, including 0^th group, 1^st group, 3^rd group, 6th h group, 12^th group and 24^th group. All the rats were gavaged with 2 mL of suspension of lactulose (L) (100 mg/2 mL) and mannitol (M) (50 mg/each) at the beginning and then an experimental rat model of hemorrhagic shock was set up. The specimens from jejunum, ileum and colon tissues and the blood samples from the portal vein were taken at 0, 1, 3, 6, 12 and 24 h after shock resuscitation, respectively. The morphological changes of the intestinal mucosa, including the histology of intestinal mucosa, the thickness of mucosa, the height of villi, the index of mucosal damage and the numbers of goblet cells, were determined by light microscope and/or electron microscope. The concentrations of the bacterial endotoxin lipopolysaccharides (LPS) from the portal vein blood, which reflected the gut barrier function, were examined by using Limulus test. At the same time point, to evaluate intestinal permeability, all urine was collected and the concentrations of the metabolically inactive markers such as L and M in urine were measured by using GC-9A gas chromatographic instrument.RESULTS: After the hemorrhagic shock, the mucosal epithelial injury was obvious in small intestine even at the 0th h, and it became more serious at the 1^stand the 3^rd h. The tissue restitution was also found after 3 h, though the injury was still serious. Most of the injured mucosal restitution was established after 6 展开更多
In the present study,the performances of the NWP models on two heavy rainfalls on 20 July and 22 August 2021 over Henan Province were investigated.The impacts of the water vapor transport to the extreme rainfall were ...In the present study,the performances of the NWP models on two heavy rainfalls on 20 July and 22 August 2021 over Henan Province were investigated.The impacts of the water vapor transport to the extreme rainfall were further discussed.The results showed that the regional model system in the Guangzhou Meteorological Service generally showed high scores on the extreme rainfall over Henan.The maximum 24h accumulative rainfall by the 24h forecasts by the CMA-GD reached 556 mm over Henan Province.The 24-h and 48-h Threat Score(TS)of heavy rainfall reached 0.56 and 0.64.The comparisons of the Fraction Skill Score(FSS)verifications of the heavy rainfall by CMA-GD and CMA-TRAMS at the radium of 40km reached 0.96 and 0.87.The water vapor transport to the extreme rainfall showed that the vertically integrated water vapor transport(IVT)of the whole layer before the occurrence of the heavy rainfall exhibited a double-eyes distribution in case 7·20.The north eye over Henan reached the same magnitude of IVT as the typhoon eye(Cempaka)over south China.The IVT over the lower troposphere(<500 hPa)showed an overwhelming magnitude than the upper level,especially in the planetary boundary layer(<700 hPa).More practical technique needs to be developed to improve its performances on the forecasting of extreme rainfall,as well as more experiments need to be conducted to examine the effects of the specific terrain and physical schemes on the extreme rainfall.展开更多
Soil degradation, defined as lowering and losing of soil functions, is becoming more and more serious worldwide in recent decades, and poses a threat to agricultural production and terrestrial ecosystem. It is estimat...Soil degradation, defined as lowering and losing of soil functions, is becoming more and more serious worldwide in recent decades, and poses a threat to agricultural production and terrestrial ecosystem. It is estimated that nearly 2 billion ha of soil resources in the world have been degraded, namely approximately 22% of the total cropland, pasture, forest, and woodland. Globally, soil erosion, chemical deterioration and physical degradation are the important parts amongst various types of soil degradation. As a natural process, soil degradation can be enhanced or dampened by a variety of human activities such as inappropriate agricultural management, overgrazing, deforestation, etc. Degraded soil means less food. As a result of soil degradation, it is estimated that about 11.9-13.4% of the global agricultural supply has been lost in the past five decades. Besides, soil degradation is also associated with off-site problems of sedimentation, climate change, watershed functions, and changes in natural habitats leading to loss of genetic stock and biodiversity. Therefore, it is essential to combat soil degradation at different levels and scales worldwide, not only for food security and ecological health, but also for the guarantee of global sustainable development.展开更多
This review summarizes the general developments of the operational mesoscale model system based on the Global/Regional Assimilation and Prediction System-Tropical Monsoon Model (GRAPES-TMM) at the Guangzhou Regional M...This review summarizes the general developments of the operational mesoscale model system based on the Global/Regional Assimilation and Prediction System-Tropical Monsoon Model (GRAPES-TMM) at the Guangzhou Regional Meteorological Center. GRAPES-TMM consists of the Tropical Regional Atmospheric Model System for the South China Sea (TRAMS, a typhoon model with a horizontal resolution of 9 km), the Mesoscale Atmospheric Regional Model System (MARS, 3km) and the fine-scale Rapid Update Cycling (RUC, 1km) forecasting system. The main advances of model dynamical core and physical processes are summarized, including the development of the 3D reference atmosphere scheme, the coupling scheme between dynamics and model physics, the calculation of nonlinear terms by fractional steps, the gravity wave drag scheme induced by sub-grid orography and a simplified model for landsurface scheme. The progress of model applications is reviewed and evaluated. The results show that the updated 9-3-1forecasting system provides an overall improved performance on the weather forecasting in south China, especially for typhoon-genesis and typhoon-track forecasting as well as short-range weather forecasting. Capabilities and limitations as well as the future development of the forecasting system are also discussed.展开更多
The concept of pedodiversity and its measurement methodology proposed and developed by Ibá?ez research term is introduced. An attempt to apply pedodiversity to analyze spatial soil variation and distribution patt...The concept of pedodiversity and its measurement methodology proposed and developed by Ibá?ez research term is introduced. An attempt to apply pedodiversity to analyze spatial soil variation and distribution patterns on the global scale is briefly demonstrated. Furthermore, constructive comments and criticisms on pedodiversity and its measurement from the noted pedologists and ecologists are outlined. Finally, potential applications of pedodiversity in soil science and other relevant disciplines are discussed.展开更多
目的应用平均幅度差函数之和(the sum of average magnitude difference function,SAMDF)处理室颤的心电信号,通过与常用预测除颤时间方法振幅谱面积(amplitude spectrum area,AMSA)进行对比找到预测除颤时间更优的方法。方法应用56头重...目的应用平均幅度差函数之和(the sum of average magnitude difference function,SAMDF)处理室颤的心电信号,通过与常用预测除颤时间方法振幅谱面积(amplitude spectrum area,AMSA)进行对比找到预测除颤时间更优的方法。方法应用56头重(40±5)kg雄性家猪,诱导室颤后进行10 min未处理的室颤、6 min的心肺复苏和除颤。在室颤和心肺复苏过程当中会记录每1 min SAMDF和AMSA的数据并记录下来。进而计算受试者工作特征(receiver operating characteristic,ROC)曲线,应用单向方差分析(one-way analyses of variance,one-way ANOVA)以及正负样本散点图的比较,以此说明两者均能优化最佳除颤时间。比较除颤成功组(Group R)和除颤失败组(Group N)的SAMDF和AMSA的数值以说明两者预测除颤成功的能力。结果散点图显示SAMDF和AMSA均能够区分阳性和负样本(P<0.001)。ROC曲线显示SAMDF(AUC=0.801,P<0.001)和AMSA(AUC=0.777,P<0.001)一样有着相同的能力预测最佳除颤时间。两组SAMDF和AMSA数值比较,Group R的SAMDF和AMSA数值明显高于Group N(P<0.001)。结论SAMDF在优化预测除颤时机方面具有很高的潜力,并且可以作为AMSA等现有有效预测除颤时机特征的补充。展开更多
基金Supported by the Grants from the Health Research Foundation (A2003189) and the Science Research Project (2004B30601001) of Guangdong Province, China
文摘AIM: To investigate the functional, morphological changes of the gut barrier during the restitution process after hemorrhagic shock, and the regional differences of the large intestine and small intestine in response to ischemia/ reperfusion injury. METHODS: Forty-seven Sprague-Dawley rats with body weight of 250-300 g were divided into two groups: control group (sham shock n = 5) and experimental group (n = 42). Experimental group was further divided into six groups (n = 7 each) according to different time points after the hemorrhagic shock, including 0^th group, 1^st group, 3^rd group, 6th h group, 12^th group and 24^th group. All the rats were gavaged with 2 mL of suspension of lactulose (L) (100 mg/2 mL) and mannitol (M) (50 mg/each) at the beginning and then an experimental rat model of hemorrhagic shock was set up. The specimens from jejunum, ileum and colon tissues and the blood samples from the portal vein were taken at 0, 1, 3, 6, 12 and 24 h after shock resuscitation, respectively. The morphological changes of the intestinal mucosa, including the histology of intestinal mucosa, the thickness of mucosa, the height of villi, the index of mucosal damage and the numbers of goblet cells, were determined by light microscope and/or electron microscope. The concentrations of the bacterial endotoxin lipopolysaccharides (LPS) from the portal vein blood, which reflected the gut barrier function, were examined by using Limulus test. At the same time point, to evaluate intestinal permeability, all urine was collected and the concentrations of the metabolically inactive markers such as L and M in urine were measured by using GC-9A gas chromatographic instrument.RESULTS: After the hemorrhagic shock, the mucosal epithelial injury was obvious in small intestine even at the 0th h, and it became more serious at the 1^stand the 3^rd h. The tissue restitution was also found after 3 h, though the injury was still serious. Most of the injured mucosal restitution was established after 6
基金National Key Research and Development Program of China(2018YFC1507602)National Natural Science Foundation of China(42175105,41505084)Project of Guangzhou Science and Technology(2019B111101002)。
文摘In the present study,the performances of the NWP models on two heavy rainfalls on 20 July and 22 August 2021 over Henan Province were investigated.The impacts of the water vapor transport to the extreme rainfall were further discussed.The results showed that the regional model system in the Guangzhou Meteorological Service generally showed high scores on the extreme rainfall over Henan.The maximum 24h accumulative rainfall by the 24h forecasts by the CMA-GD reached 556 mm over Henan Province.The 24-h and 48-h Threat Score(TS)of heavy rainfall reached 0.56 and 0.64.The comparisons of the Fraction Skill Score(FSS)verifications of the heavy rainfall by CMA-GD and CMA-TRAMS at the radium of 40km reached 0.96 and 0.87.The water vapor transport to the extreme rainfall showed that the vertically integrated water vapor transport(IVT)of the whole layer before the occurrence of the heavy rainfall exhibited a double-eyes distribution in case 7·20.The north eye over Henan reached the same magnitude of IVT as the typhoon eye(Cempaka)over south China.The IVT over the lower troposphere(<500 hPa)showed an overwhelming magnitude than the upper level,especially in the planetary boundary layer(<700 hPa).More practical technique needs to be developed to improve its performances on the forecasting of extreme rainfall,as well as more experiments need to be conducted to examine the effects of the specific terrain and physical schemes on the extreme rainfall.
基金Key State Basic Research Program of China No. G1999045707
文摘Soil degradation, defined as lowering and losing of soil functions, is becoming more and more serious worldwide in recent decades, and poses a threat to agricultural production and terrestrial ecosystem. It is estimated that nearly 2 billion ha of soil resources in the world have been degraded, namely approximately 22% of the total cropland, pasture, forest, and woodland. Globally, soil erosion, chemical deterioration and physical degradation are the important parts amongst various types of soil degradation. As a natural process, soil degradation can be enhanced or dampened by a variety of human activities such as inappropriate agricultural management, overgrazing, deforestation, etc. Degraded soil means less food. As a result of soil degradation, it is estimated that about 11.9-13.4% of the global agricultural supply has been lost in the past five decades. Besides, soil degradation is also associated with off-site problems of sedimentation, climate change, watershed functions, and changes in natural habitats leading to loss of genetic stock and biodiversity. Therefore, it is essential to combat soil degradation at different levels and scales worldwide, not only for food security and ecological health, but also for the guarantee of global sustainable development.
基金National Key R&D Program of China(2018YFC1506901)National Natural Science Foundation of China (41505084)Program of Science and Technology Department of Guangdong Province (201804020038)。
文摘This review summarizes the general developments of the operational mesoscale model system based on the Global/Regional Assimilation and Prediction System-Tropical Monsoon Model (GRAPES-TMM) at the Guangzhou Regional Meteorological Center. GRAPES-TMM consists of the Tropical Regional Atmospheric Model System for the South China Sea (TRAMS, a typhoon model with a horizontal resolution of 9 km), the Mesoscale Atmospheric Regional Model System (MARS, 3km) and the fine-scale Rapid Update Cycling (RUC, 1km) forecasting system. The main advances of model dynamical core and physical processes are summarized, including the development of the 3D reference atmosphere scheme, the coupling scheme between dynamics and model physics, the calculation of nonlinear terms by fractional steps, the gravity wave drag scheme induced by sub-grid orography and a simplified model for landsurface scheme. The progress of model applications is reviewed and evaluated. The results show that the updated 9-3-1forecasting system provides an overall improved performance on the weather forecasting in south China, especially for typhoon-genesis and typhoon-track forecasting as well as short-range weather forecasting. Capabilities and limitations as well as the future development of the forecasting system are also discussed.
文摘The concept of pedodiversity and its measurement methodology proposed and developed by Ibá?ez research term is introduced. An attempt to apply pedodiversity to analyze spatial soil variation and distribution patterns on the global scale is briefly demonstrated. Furthermore, constructive comments and criticisms on pedodiversity and its measurement from the noted pedologists and ecologists are outlined. Finally, potential applications of pedodiversity in soil science and other relevant disciplines are discussed.
文摘目的应用平均幅度差函数之和(the sum of average magnitude difference function,SAMDF)处理室颤的心电信号,通过与常用预测除颤时间方法振幅谱面积(amplitude spectrum area,AMSA)进行对比找到预测除颤时间更优的方法。方法应用56头重(40±5)kg雄性家猪,诱导室颤后进行10 min未处理的室颤、6 min的心肺复苏和除颤。在室颤和心肺复苏过程当中会记录每1 min SAMDF和AMSA的数据并记录下来。进而计算受试者工作特征(receiver operating characteristic,ROC)曲线,应用单向方差分析(one-way analyses of variance,one-way ANOVA)以及正负样本散点图的比较,以此说明两者均能优化最佳除颤时间。比较除颤成功组(Group R)和除颤失败组(Group N)的SAMDF和AMSA的数值以说明两者预测除颤成功的能力。结果散点图显示SAMDF和AMSA均能够区分阳性和负样本(P<0.001)。ROC曲线显示SAMDF(AUC=0.801,P<0.001)和AMSA(AUC=0.777,P<0.001)一样有着相同的能力预测最佳除颤时间。两组SAMDF和AMSA数值比较,Group R的SAMDF和AMSA数值明显高于Group N(P<0.001)。结论SAMDF在优化预测除颤时机方面具有很高的潜力,并且可以作为AMSA等现有有效预测除颤时机特征的补充。