全球气候变化情景下,植物功能属性对于揭示植物对环境变化的响应和适应规律至关重要。本研究以内蒙古典型草原优势种羊草(Leymus chinensis)为研究对象,通过开顶式生长室(open top chamber,OTC)人工模拟增温和降雨,量化分析了羊草植物...全球气候变化情景下,植物功能属性对于揭示植物对环境变化的响应和适应规律至关重要。本研究以内蒙古典型草原优势种羊草(Leymus chinensis)为研究对象,通过开顶式生长室(open top chamber,OTC)人工模拟增温和降雨,量化分析了羊草植物功能性状对增温和增雨处理的响应。得到以下结果:1)单因素方差分析表明,增温增水和增温处理都显著增加了羊草植物株高、茎鲜质量和茎干质量,对其余指标没有显著影响;增水处理对羊草所有指标都没有显著影响(P>0.05)。2)双因素方差分析结果显示,增温增水对植物的功能性状不存在明显的交互作用(P>0.05)。3)各处理下,叶片干物质含量与比叶面积呈负相关关系。在内蒙古典型草原,未来气候暖湿化对羊草的生长在一定程度上起促进作用。展开更多
Qing-Fei-Pai-Du decoction(QFPDD)is a Chinese medicine compound formula recommended for combating corona virus disease 2019(COVID-19)by National Health Commission of the People's Republic of China.The latest clinic...Qing-Fei-Pai-Du decoction(QFPDD)is a Chinese medicine compound formula recommended for combating corona virus disease 2019(COVID-19)by National Health Commission of the People's Republic of China.The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery,viral shedding,hospital stay,and course of the disease.However,the effective constituents of QFPDD remain unclear.In this study,an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD.A total of 405 chemicals,including 40 kinds of alkaloids,162 kinds of flavonoids,44 kinds of organic acids,71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature.With the help of the standards and in vitro metabolites,195 chemical components(including 104 prototypes and 91 metabolites)were identified in mice serum after oral administration of QFPDD.In addition,165,177,112,120,44,53 constituents were identified in the lung,liver,heart,kidney,brain,and spleen of QFPDD-treated mice,respectively.These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.展开更多
Previous studies have shown that Lycium barbarum polysaccharide,the main active component of Lycium barbarum,exhibits antiinflammatory and antioxidant effects in treating neurological diseases.However,the therapeutic ...Previous studies have shown that Lycium barbarum polysaccharide,the main active component of Lycium barbarum,exhibits antiinflammatory and antioxidant effects in treating neurological diseases.However,the therapeutic action of Lycium barbarum polysaccharide on depression has not been studied.In this investigation,we established mouse models of depression using aversive stimuli including exposure to fox urine,air puff and foot shock and physical restraint.Concurrently,we administered 5 mg/kg per day Lycium barbarum polysaccharide-glycoprotein to each mouse intragastrically for the 28 days.Our results showed that long-term exposure to aversive stimuli significantly enhanced depressive-like behavior evaluated by the sucrose preference test and the forced swimming test and increased anxietylike behaviors evaluated using the open field test.In addition,aversive stimuli-induced depressed mice exhibited aberrant neuronal activity in the lateral habenula.Importantly,concurrent Lycium barbarum polysaccharide-glycoprotein treatment significantly reduced these changes.These findings suggest that Lycium barbarum polysaccharide-glycoprotein is a potential preventative intervention for depression and may act by preventing aberrant neuronal activity and microglial activation in the lateral habenula.The study was approved by the Jinan University Institutional Animal Care and Use Committee(approval No.20170301003)on March 1,2017.展开更多
Understanding the role of heat transfer between catalysts and substrates is important for enhancing photothermal CO2 catalysis.Herein,we investigate the effect of different substrates,including silicon wafers,glass sl...Understanding the role of heat transfer between catalysts and substrates is important for enhancing photothermal CO2 catalysis.Herein,we investigate the effect of different substrates,including silicon wafers,glass slides and copper plates,on the photothermal catalytic performance of commercial Ni catalysts.The highest CO2 conversion rate and CO selectivity are observed in the catalyst film on the glass substrate,and this can be traced to a reduced catalyst-to-substrate heat transfer that increases the catalyst temperature under illumination.Our study reveals the important role of thermal management between catalysts and substrates in photothermal catalysis and sheds light on reactor design for efficient solar-to-chemical energy conversions.展开更多
Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associate...Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associated with secondary degeneration including apoptosis, necrosis, autophagy, oxidative stress, excitotoxicity, derangements in ionic homeostasis and calcium influx. Glial cells, such as microglia, astrocytes and oligodendrocytes, have also been demon- strated to take part in the process of secondary injury. Partial optic nerve transection is a useful model which was established about 13 years ago. The merit of this model compared with other optic nerve injury models used for glaucoma study, including complete optic nerve transection model and optic nerve crush model, is the possibility to separate primary degeneration from secondary degeneration in location. Therefore, it provides a good tool for the study of secondary degeneration. This review will focus on the research progress of the mechanisms of secondary degeneration using partial optic nerve transection model.展开更多
Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the str...Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the 展开更多
Guizhi Fuling capsule(GFC), a traditional Chinese medicine(TCM) with effects of promoting blood circulation and dissipating blood stasis, has been widely used in the clinic. Because of the complex matrix and various c...Guizhi Fuling capsule(GFC), a traditional Chinese medicine(TCM) with effects of promoting blood circulation and dissipating blood stasis, has been widely used in the clinic. Because of the complex matrix and various chemical structure types, quality control of GFC remains great challenge. In the present study, an ultra performance liquid chromatography hybrid triple-quadrupole mass spectrometry(UPLC-QQQ MS) method with ultrafast positive/negative ionization switching was developed for simultaneous determination of 18 bioactive components in GFC, including methyl gallate, ethyl gallate, oxypaeoniflorin, benzoic acid, albiflorin, paeonolide, paeoniflorin, 1, 2, 3, 4, 6-pentagalloylglucose, mudanpioside C, benzoyloxypaeoniflorin, benzoylpaeoniflorin, pachymic acid, amygdalin, cinnamaldehyde, paeonol, cinnamic acid, 4-hydroxybenzoic acid, and gallic acid. Separation was performed on an Agilent Zorbax Extend–C18 column(2.1 mm × 50 mm, 1.8 μm), using a gradient elution with acetonitrile and water containing 0.1% formic acid. Cholic acid was selected as the internal standard. This newly developed method was fully validated for linearity, precision, accuracy, and stability, and then applied to quality assessment of GFC. Finally, the batch-to-batch reproducibility of GFC samples was evaluated by the cosine ration and Euclidean distance method, which showed high quality consistency. The results demonstrated that the developed method provided a reasonable and powerful manner for quality control of GFC.展开更多
A variable mass tuned particle absorber is designed for the nonlinear vertical vibration control of the corrugated rolling mill in the composite plate rolling process.Considering the nonlinear damping and nonlinear st...A variable mass tuned particle absorber is designed for the nonlinear vertical vibration control of the corrugated rolling mill in the composite plate rolling process.Considering the nonlinear damping and nonlinear stiffness between the corrugated interface,a three-degree-of-freedom nonlinear vertical vibration mathematical model of corrugated rolling mill based on dynamic vibration absorber control is established.The multi-scale method is used to solve the amplitude–frequency characteristic curve equation of the installed dynamic vibration absorber(DVA)system.The effects of stiffness coefficient and damping coefficient on the amplitude–frequency characteristic curve are analyzed.The expressions of the dynamic developed factor of the corrugated roll are derived,and the influence laws of mass ratio,frequency ratio and damping ratio on the dynamic amplification factor are analyzed.The optimal parameters of the DVA are obtained by adaptive genetic algorithm.The control effect of the DVA on the nonlinear vertical vibration is studied by numerical simulation.The feasibility of the designed dynamic absorber is verified through experiments.The results show that the designed dynamic absorber can effectively suppress the vertical vibration of the corrugated roller.展开更多
Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological funct...Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a poten展开更多
Recently,more and more attention has been paid to the strong oxidation ability of newly prepared potassium ferrate(NAPF) in sludge reduction process,but less attention has been paid to the change of phosphorus in this...Recently,more and more attention has been paid to the strong oxidation ability of newly prepared potassium ferrate(NAPF) in sludge reduction process,but less attention has been paid to the change of phosphorus in this process.The feasibility of phosphorus migration and transformation during excess sludge reduction pretre atment using NAPF pre-oxidation combined with anaerobic digestion was investigated.After 70 mg/g suspended solids NAPF pretreatment and 16 days anaerobic digestion,the solid-phase volatile suspended solids decreased by 44.2%,and much organic matter had been released into the liquid-phase and then degraded during digestion by indigenous microorganisms.As the sludge pre-oxidation process was performed,solid-phase organic phosphorus and chemically combined phosphorus also released into the liquid-phase as PO4^3-,peaking at 100 mg/L.During anaerobic digestion,the Fe3+in the liquid-phase was gradually reduced to Fe2+,and then formed Fe^2+-PO4^3- compound crystals and re-migrated to the solid-phase.The concentration of PO4^3- decreased to 17.08± 1.1 mg/L in the liquid-phase after anaerobic digestion.Finally,the phosphorus in the Fe^2+-PO4^3- compound accounts for 80% of the total phosphorus in the solid-phase.A large number of vivianite crystals in sludge were observed.Therefore,this technology not only effectively reduces sludge,but also increases the proportion of PO43-in the sludge in the form of Vivianite.展开更多
Light plays an essential role in psychobiological and psychophysiological processes,such as alertness.The alerting effect is influenced by light characteristics and the timing of interventions.This meta-analysis is th...Light plays an essential role in psychobiological and psychophysiological processes,such as alertness.The alerting effect is influenced by light characteristics and the timing of interventions.This meta-analysis is the first to systematically review the effect of light intervention on alertness and to discuss the optimal protocol for light intervention.In this meta-analysis,registered at PROSPERO(Registration ID:CRD42020181485),we conducted a systematic search of the Web of Science,PubMed,and PsycINFO databases for studies published in English prior to August 2021.The outcomes included both subjective and objective alertness.Subgroup analyses considered a variety of factors,such as wavelength,correlated color temperature(CCT),light illuminance,and timing of interventions(daytime,night-time,or all day).Twenty-seven crossover studies and two parallel-group studies were included in this meta-analysis,with a total of 1210 healthy participants(636(52%)male,mean age 25.62 years).The results revealed that light intervention had a positive effect on both subjective alertness(standardized mean difference(SMD)=-0.28,95%confidence interval(CI):-0.49 to-0.06,P=0.01)and objective alertness in healthy subjects(SMD=-0.34,95%CI:-0.68 to-0.01,P=0.04).The subgroup analysis revealed that cold light was better than warm light in improving subjective alertness(SMD=-0.37,95%CI:-0.65 to-0.10,P=0.007,I2=26%)and objective alertness(SMD=-0.36,95%CI:-0.66 to-0.07,P=0.02,I2=0).Both daytime(SMD=-0.22,95%CI:-0.37 to-0.07,P=0.005,I2=74%)and night-time(SMD=-0.32,95%CI:-0.61 to-0.02,P=0.04,I2=0)light exposure improved subjective alertness.The results of this meta-analysis and systematic review indicate that light exposure is associated with significant improvement in subjective and objective alertness.In addition,light exposure with a higher CCT was more effective in improving alertness than light exposure with a lower CCT.Our results also suggest that both daytime and night-time light exposure can improve subjective alertness.展开更多
Rhenium(Re)has recently emerged as a promising catalyst in hydrogen evolution reactions(HER)due to its metalhydrogen interaction,which resembles that of Pt.The availability of small-sized Re nanoparticles with abundan...Rhenium(Re)has recently emerged as a promising catalyst in hydrogen evolution reactions(HER)due to its metalhydrogen interaction,which resembles that of Pt.The availability of small-sized Re nanoparticles with abundant accessible active sites is nevertheless limited by the required high-temperature preparation conditions.展开更多
文摘全球气候变化情景下,植物功能属性对于揭示植物对环境变化的响应和适应规律至关重要。本研究以内蒙古典型草原优势种羊草(Leymus chinensis)为研究对象,通过开顶式生长室(open top chamber,OTC)人工模拟增温和降雨,量化分析了羊草植物功能性状对增温和增雨处理的响应。得到以下结果:1)单因素方差分析表明,增温增水和增温处理都显著增加了羊草植物株高、茎鲜质量和茎干质量,对其余指标没有显著影响;增水处理对羊草所有指标都没有显著影响(P>0.05)。2)双因素方差分析结果显示,增温增水对植物的功能性状不存在明显的交互作用(P>0.05)。3)各处理下,叶片干物质含量与比叶面积呈负相关关系。在内蒙古典型草原,未来气候暖湿化对羊草的生长在一定程度上起促进作用。
基金the National Key Research and Development Program of China(2020YFC0845400)the NSF of China(81922070)+3 种基金Shanghai Science and Technology Innovation Action Plans(20S2190150020S21900900)supported by Shanghai Science and Technology Committeethe Three-year Action Plan of Shanghai TCM Development(ZY-(2018-2020)-CCCX-5001)Program of Shanghai Academic/Technology Research Leader(18XD1403600)。
文摘Qing-Fei-Pai-Du decoction(QFPDD)is a Chinese medicine compound formula recommended for combating corona virus disease 2019(COVID-19)by National Health Commission of the People's Republic of China.The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery,viral shedding,hospital stay,and course of the disease.However,the effective constituents of QFPDD remain unclear.In this study,an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD.A total of 405 chemicals,including 40 kinds of alkaloids,162 kinds of flavonoids,44 kinds of organic acids,71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature.With the help of the standards and in vitro metabolites,195 chemical components(including 104 prototypes and 91 metabolites)were identified in mice serum after oral administration of QFPDD.In addition,165,177,112,120,44,53 constituents were identified in the lung,liver,heart,kidney,brain,and spleen of QFPDD-treated mice,respectively.These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.
基金supported by the National Natural Science Foundation of China,Nos.31900825(to SL),31922030(to CRR),31771170(to CRR)Science and Technology Program of Guangdong Province of China,No.2018B030334001(to CRR)+3 种基金Science and Techology of Guangzhou of China,No.202007030012(to CRR)Guangdong Special Support Program of China,No.2017TQ04R173(to CRR)Pearl River S&T Nova Program of Guangzhou Province of China,No.201806010198(to CRR)Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR110102002(to KFS)。
文摘Previous studies have shown that Lycium barbarum polysaccharide,the main active component of Lycium barbarum,exhibits antiinflammatory and antioxidant effects in treating neurological diseases.However,the therapeutic action of Lycium barbarum polysaccharide on depression has not been studied.In this investigation,we established mouse models of depression using aversive stimuli including exposure to fox urine,air puff and foot shock and physical restraint.Concurrently,we administered 5 mg/kg per day Lycium barbarum polysaccharide-glycoprotein to each mouse intragastrically for the 28 days.Our results showed that long-term exposure to aversive stimuli significantly enhanced depressive-like behavior evaluated by the sucrose preference test and the forced swimming test and increased anxietylike behaviors evaluated using the open field test.In addition,aversive stimuli-induced depressed mice exhibited aberrant neuronal activity in the lateral habenula.Importantly,concurrent Lycium barbarum polysaccharide-glycoprotein treatment significantly reduced these changes.These findings suggest that Lycium barbarum polysaccharide-glycoprotein is a potential preventative intervention for depression and may act by preventing aberrant neuronal activity and microglial activation in the lateral habenula.The study was approved by the Jinan University Institutional Animal Care and Use Committee(approval No.20170301003)on March 1,2017.
基金financially supported by the National Natural Science Foundation of China(51802208,1902113,51920105005)the China Postdoctoral Science Foundation(2017M611893)+2 种基金111 Projectthe Collaborative Innovation Centre of Suzhou Nano Science&Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Understanding the role of heat transfer between catalysts and substrates is important for enhancing photothermal CO2 catalysis.Herein,we investigate the effect of different substrates,including silicon wafers,glass slides and copper plates,on the photothermal catalytic performance of commercial Ni catalysts.The highest CO2 conversion rate and CO selectivity are observed in the catalyst film on the glass substrate,and this can be traced to a reduced catalyst-to-substrate heat transfer that increases the catalyst temperature under illumination.Our study reveals the important role of thermal management between catalysts and substrates in photothermal catalysis and sheds light on reactor design for efficient solar-to-chemical energy conversions.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(HKU 776109M)supported by the Fundamental Research Funds for the Central Universities Grant 21609101
文摘Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associated with secondary degeneration including apoptosis, necrosis, autophagy, oxidative stress, excitotoxicity, derangements in ionic homeostasis and calcium influx. Glial cells, such as microglia, astrocytes and oligodendrocytes, have also been demon- strated to take part in the process of secondary injury. Partial optic nerve transection is a useful model which was established about 13 years ago. The merit of this model compared with other optic nerve injury models used for glaucoma study, including complete optic nerve transection model and optic nerve crush model, is the possibility to separate primary degeneration from secondary degeneration in location. Therefore, it provides a good tool for the study of secondary degeneration. This review will focus on the research progress of the mechanisms of secondary degeneration using partial optic nerve transection model.
基金supported by the Chongqing Natural Science Foundation(No.cstc2020jcyjmsxm X0904)the Chongqing Talent Plan(No.CQYC2020058263)+3 种基金the Chongqing Technology Innovation and Application Development Project(No.cstc2021ycjh-bgzxm0246)the China Postdoctoral Science Foundation(No.2021M693739)the Sichuan Science and Technology Program(No.2021YJ0539)the Natural Science foundation of Jiangsu higher education institutions of China(Grant No.19KJD170001)。
文摘Currently,the water inrush hazards during tunnel construction,the water leakage during tunnel operation,and the accompanying disturbances to the ecological environment have become the main problems that affect the structural safety of tunnels in water-rich regions.In this paper,a tunnel seepage model testing system was used to conduct experiments of the grouting circle and primary support with different permeability coefficients.The influences of the supporting structures on the water inflow laws and the distribution of the water pressure in the tunnel were analyzed.With the decrease in the permeability coefficient of the grouting circle or the primary support,the inflow rate of water into the tunnel showed a non-linear decreasing trend.In comparison,the water inflow reduction effect of grouting circle was much better than that of primary support.With the increase of the permeability coefficient of the grouting ring,the water pressure behind the primary lining increases gradually,while the water pressure behind the grouting ring decreases.Thus,the grouting of surrounding rock during the construction of water-rich tunnel can effectively weaken the hydraulic connection,reduce the influence range of seepage,and significantly reduce the decline of groundwater.Meanwhile,the seepage tests at different hydrostatic heads and hydrodynamic heads during tunnel operation period were also conducted.As the hydrostatic head decreased,the water pressure at each characteristic point decreased approximately linearly,and the water inflow rate also had a gradual downward trend.Under the action of hydrodynamic head,the water pressure had an obvious lagging effect,which was not conducive to the stability of the supporting structures,and it could be mitigated by actively regulating the drainage rate.Compared with the hydrostatic head,the hydrodynamic head could change the real-time rate of water inflow to the tunnel and broke the dynamic balance between the water pressure and water inflow rate,thereby affecting the stress state on the
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130096140001)the 111 Project(No.B16046)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Guizhi Fuling capsule(GFC), a traditional Chinese medicine(TCM) with effects of promoting blood circulation and dissipating blood stasis, has been widely used in the clinic. Because of the complex matrix and various chemical structure types, quality control of GFC remains great challenge. In the present study, an ultra performance liquid chromatography hybrid triple-quadrupole mass spectrometry(UPLC-QQQ MS) method with ultrafast positive/negative ionization switching was developed for simultaneous determination of 18 bioactive components in GFC, including methyl gallate, ethyl gallate, oxypaeoniflorin, benzoic acid, albiflorin, paeonolide, paeoniflorin, 1, 2, 3, 4, 6-pentagalloylglucose, mudanpioside C, benzoyloxypaeoniflorin, benzoylpaeoniflorin, pachymic acid, amygdalin, cinnamaldehyde, paeonol, cinnamic acid, 4-hydroxybenzoic acid, and gallic acid. Separation was performed on an Agilent Zorbax Extend–C18 column(2.1 mm × 50 mm, 1.8 μm), using a gradient elution with acetonitrile and water containing 0.1% formic acid. Cholic acid was selected as the internal standard. This newly developed method was fully validated for linearity, precision, accuracy, and stability, and then applied to quality assessment of GFC. Finally, the batch-to-batch reproducibility of GFC samples was evaluated by the cosine ration and Euclidean distance method, which showed high quality consistency. The results demonstrated that the developed method provided a reasonable and powerful manner for quality control of GFC.
基金National Key Research and Development Project(2018YFA0707300)National Natural Science Foundation of China(52205404)Fundamental Research Program of Shanxi Province(202203021212293).
文摘A variable mass tuned particle absorber is designed for the nonlinear vertical vibration control of the corrugated rolling mill in the composite plate rolling process.Considering the nonlinear damping and nonlinear stiffness between the corrugated interface,a three-degree-of-freedom nonlinear vertical vibration mathematical model of corrugated rolling mill based on dynamic vibration absorber control is established.The multi-scale method is used to solve the amplitude–frequency characteristic curve equation of the installed dynamic vibration absorber(DVA)system.The effects of stiffness coefficient and damping coefficient on the amplitude–frequency characteristic curve are analyzed.The expressions of the dynamic developed factor of the corrugated roll are derived,and the influence laws of mass ratio,frequency ratio and damping ratio on the dynamic amplification factor are analyzed.The optimal parameters of the DVA are obtained by adaptive genetic algorithm.The control effect of the DVA on the nonlinear vertical vibration is studied by numerical simulation.The feasibility of the designed dynamic absorber is verified through experiments.The results show that the designed dynamic absorber can effectively suppress the vertical vibration of the corrugated roller.
文摘Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a poten
基金supported by the National Natural Science Foundation of China(No.51938010)the Major Science and Technology Projects for Water Pollution Control and Treatment of China(No.2017ZX07205002)+1 种基金National Key Research and Development Programme of China(No.2016YFC0401103)the Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment。
文摘Recently,more and more attention has been paid to the strong oxidation ability of newly prepared potassium ferrate(NAPF) in sludge reduction process,but less attention has been paid to the change of phosphorus in this process.The feasibility of phosphorus migration and transformation during excess sludge reduction pretre atment using NAPF pre-oxidation combined with anaerobic digestion was investigated.After 70 mg/g suspended solids NAPF pretreatment and 16 days anaerobic digestion,the solid-phase volatile suspended solids decreased by 44.2%,and much organic matter had been released into the liquid-phase and then degraded during digestion by indigenous microorganisms.As the sludge pre-oxidation process was performed,solid-phase organic phosphorus and chemically combined phosphorus also released into the liquid-phase as PO4^3-,peaking at 100 mg/L.During anaerobic digestion,the Fe3+in the liquid-phase was gradually reduced to Fe2+,and then formed Fe^2+-PO4^3- compound crystals and re-migrated to the solid-phase.The concentration of PO4^3- decreased to 17.08± 1.1 mg/L in the liquid-phase after anaerobic digestion.Finally,the phosphorus in the Fe^2+-PO4^3- compound accounts for 80% of the total phosphorus in the solid-phase.A large number of vivianite crystals in sludge were observed.Therefore,this technology not only effectively reduces sludge,but also increases the proportion of PO43-in the sludge in the form of Vivianite.
基金supported by the National Natural Science Foundation of China,No.82172530(to QT)Science and Technology Program of Guangdong,No.2018B030334001(to CRR)Guangzhou Science and Technology Project,No.202007030012(to QT).
文摘Light plays an essential role in psychobiological and psychophysiological processes,such as alertness.The alerting effect is influenced by light characteristics and the timing of interventions.This meta-analysis is the first to systematically review the effect of light intervention on alertness and to discuss the optimal protocol for light intervention.In this meta-analysis,registered at PROSPERO(Registration ID:CRD42020181485),we conducted a systematic search of the Web of Science,PubMed,and PsycINFO databases for studies published in English prior to August 2021.The outcomes included both subjective and objective alertness.Subgroup analyses considered a variety of factors,such as wavelength,correlated color temperature(CCT),light illuminance,and timing of interventions(daytime,night-time,or all day).Twenty-seven crossover studies and two parallel-group studies were included in this meta-analysis,with a total of 1210 healthy participants(636(52%)male,mean age 25.62 years).The results revealed that light intervention had a positive effect on both subjective alertness(standardized mean difference(SMD)=-0.28,95%confidence interval(CI):-0.49 to-0.06,P=0.01)and objective alertness in healthy subjects(SMD=-0.34,95%CI:-0.68 to-0.01,P=0.04).The subgroup analysis revealed that cold light was better than warm light in improving subjective alertness(SMD=-0.37,95%CI:-0.65 to-0.10,P=0.007,I2=26%)and objective alertness(SMD=-0.36,95%CI:-0.66 to-0.07,P=0.02,I2=0).Both daytime(SMD=-0.22,95%CI:-0.37 to-0.07,P=0.005,I2=74%)and night-time(SMD=-0.32,95%CI:-0.61 to-0.02,P=0.04,I2=0)light exposure improved subjective alertness.The results of this meta-analysis and systematic review indicate that light exposure is associated with significant improvement in subjective and objective alertness.In addition,light exposure with a higher CCT was more effective in improving alertness than light exposure with a lower CCT.Our results also suggest that both daytime and night-time light exposure can improve subjective alertness.
基金financially supported by the National Natural Science Foundation of China(Nos.22202222,52172221,52272229 and 21902113)the Natural Science Foundation of Jiangsu Province(Nos.BK20190225 and BK20200101)+4 种基金the National Key R&D Program of China(No.2021YFF0502000)Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSuzhou Key Laboratory of Functional Nano&Soft MaterialsCollaborative Innovation Center of Suzhou Nano Science&Technologythe Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities。
文摘Rhenium(Re)has recently emerged as a promising catalyst in hydrogen evolution reactions(HER)due to its metalhydrogen interaction,which resembles that of Pt.The availability of small-sized Re nanoparticles with abundant accessible active sites is nevertheless limited by the required high-temperature preparation conditions.