The effects of modifiers on the anti-wetting and anti-icing property of the prepared rough aluminum surface were investigated.The rough aluminum substrates were obtained through electrochemical oxidization with 15 wt%...The effects of modifiers on the anti-wetting and anti-icing property of the prepared rough aluminum surface were investigated.The rough aluminum substrates were obtained through electrochemical oxidization with 15 wt% sulfuric acid solution as the electrolyte at the constant current of 4 mA for 3 h.And then they were modified with octadecanoic acid (C18),polyethylene (PE),polystyrene (PS),polyethylene glycol (PEG) and hexamethylenetetramine (HMTA),respectively,whose surface free energies were 27.6,31.0,33.0,61.6 and 70.0 mN/m,respectively.The contact angles (CA) were 154.6°,128.4°,127.6°,5.0° and 0.0°,respectively,and the ice adhesion pressures were 15.9,36.3,55.9,155.3 and 216.1 kPa,respectively.The ice adhesion strengths decrease along with the increasing anti-wetting property of aluminum surfaces and the decreasing of the surface energy of modifiers.These provide some new insights when designing the aluminum surface with anti-icing properties in some special applications.展开更多
基金Funded by National Natural Science Foundation of China(No.51801058)the Special Program for Guiding Local Science and Technology Development by the Central Government of Hubei Province(No.2019ZYYD006)Hubei Provincial Natural Science Foundation of China(No.2018CFB759)。
文摘The effects of modifiers on the anti-wetting and anti-icing property of the prepared rough aluminum surface were investigated.The rough aluminum substrates were obtained through electrochemical oxidization with 15 wt% sulfuric acid solution as the electrolyte at the constant current of 4 mA for 3 h.And then they were modified with octadecanoic acid (C18),polyethylene (PE),polystyrene (PS),polyethylene glycol (PEG) and hexamethylenetetramine (HMTA),respectively,whose surface free energies were 27.6,31.0,33.0,61.6 and 70.0 mN/m,respectively.The contact angles (CA) were 154.6°,128.4°,127.6°,5.0° and 0.0°,respectively,and the ice adhesion pressures were 15.9,36.3,55.9,155.3 and 216.1 kPa,respectively.The ice adhesion strengths decrease along with the increasing anti-wetting property of aluminum surfaces and the decreasing of the surface energy of modifiers.These provide some new insights when designing the aluminum surface with anti-icing properties in some special applications.