A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is...A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is employed to regulate the robot based on a kinematic nonlinear state feedback control law. Herein, the fuzzy strategy is composed of two velocity control laws which are used to adjust the speed and angular velocity, respectively. Subsequently, genetic algorithm (GA) is applied to optimize the controller parameters. Through the self-optimization, a group of optimum parameters is gotten. Simulation results are presented to show the effectiveness of the control strategy.展开更多
基金Supported by National Natural Science Foundation of China(61105089) State Key Laboratory of Robotics and System(SKLRS-2013-ZD-03) Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control(GZKF-201212)
基金supported by the State Key Laboratory of Robotics and System (SKLR-2010-MS-14)the State Key Laboratory of Embedded System and Service Computing (2010-11)
文摘A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is employed to regulate the robot based on a kinematic nonlinear state feedback control law. Herein, the fuzzy strategy is composed of two velocity control laws which are used to adjust the speed and angular velocity, respectively. Subsequently, genetic algorithm (GA) is applied to optimize the controller parameters. Through the self-optimization, a group of optimum parameters is gotten. Simulation results are presented to show the effectiveness of the control strategy.