Positron lifetime measurements have been made in natural polymer-Nistari silk fibers as a function of isochronalannealing temperature in the range of 27℃ to 280℃. The variations in the positron results indicate the ...Positron lifetime measurements have been made in natural polymer-Nistari silk fibers as a function of isochronalannealing temperature in the range of 27℃ to 280℃. The variations in the positron results indicate the structural changesoccurring in the Nistari silk fibers and determine the glass transition temperature as 170℃. Activation energies weremeasured separately for the crystalline and amorphous regions indicating the versatility of the technique. These values areclose to the N--H bond dissociation energy, suggesting N--H bond dissociation as the most probable process occurringduring thermal treatment As an extension of the positron results, the molecular weight of the Nistari silk fibers wasdetermined to be 10.7×10~5 based on free volume, which lies within the range suggested for the silk fibers. There seems to bean indication that cross-linking changes the spiral structure of cotton fibers to network type. However, this needs to be validated by other techniques.展开更多
文摘Positron lifetime measurements have been made in natural polymer-Nistari silk fibers as a function of isochronalannealing temperature in the range of 27℃ to 280℃. The variations in the positron results indicate the structural changesoccurring in the Nistari silk fibers and determine the glass transition temperature as 170℃. Activation energies weremeasured separately for the crystalline and amorphous regions indicating the versatility of the technique. These values areclose to the N--H bond dissociation energy, suggesting N--H bond dissociation as the most probable process occurringduring thermal treatment As an extension of the positron results, the molecular weight of the Nistari silk fibers wasdetermined to be 10.7×10~5 based on free volume, which lies within the range suggested for the silk fibers. There seems to bean indication that cross-linking changes the spiral structure of cotton fibers to network type. However, this needs to be validated by other techniques.