While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a com...While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a combination of particles, their masses not precisely predicted. This non-detectability raises the possible relevance of modified gravity theories: MOND, MONG, etc. Here we consider a specific modification of Newtonian gravity (MONG) which involves gravitational self-energy, leading to modified equations whose solutions imply flat rotation curves and limitations of sizes of clusters. The results are consistent with current observations including that involving large spirals. This modification could also explain the current Hubble tension. We also consider the effects of dark energy (DE) in terms of a cosmological constant.展开更多
Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few...Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few hundred hertz to around a kilohertz to which LIGO type instruments are sensitive. LISA would be sensitive to much lower range of frequencies from SMBH mergers. Apart from these cataclysmic burst events, there are innumerable sources of radiation which are continuously emitting gravitational waves of all frequencies. These include a whole mass range of compact binary and isolated compact objects as well as close planetary stellar entities. In this work, quantitative estimates are made of the gravitational wave background produced in typical frequency ranges from such sources emitting over a Hubble time and the fluctuations in the <i>h</i> values measured in the usual devices. Also estimates are made of the high frequency thermal background gravitational radiation from hot stellar interiors and newly formed compact objects.展开更多
文摘While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a combination of particles, their masses not precisely predicted. This non-detectability raises the possible relevance of modified gravity theories: MOND, MONG, etc. Here we consider a specific modification of Newtonian gravity (MONG) which involves gravitational self-energy, leading to modified equations whose solutions imply flat rotation curves and limitations of sizes of clusters. The results are consistent with current observations including that involving large spirals. This modification could also explain the current Hubble tension. We also consider the effects of dark energy (DE) in terms of a cosmological constant.
文摘Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few hundred hertz to around a kilohertz to which LIGO type instruments are sensitive. LISA would be sensitive to much lower range of frequencies from SMBH mergers. Apart from these cataclysmic burst events, there are innumerable sources of radiation which are continuously emitting gravitational waves of all frequencies. These include a whole mass range of compact binary and isolated compact objects as well as close planetary stellar entities. In this work, quantitative estimates are made of the gravitational wave background produced in typical frequency ranges from such sources emitting over a Hubble time and the fluctuations in the <i>h</i> values measured in the usual devices. Also estimates are made of the high frequency thermal background gravitational radiation from hot stellar interiors and newly formed compact objects.