The proximity effect to reduce the transition temperature of a superconducting film is frequently used in transitionedge sensors. Here, we develop these transition-edge sensors using Mo/Au/Au tri-layer films to detect...The proximity effect to reduce the transition temperature of a superconducting film is frequently used in transitionedge sensors. Here, we develop these transition-edge sensors using Mo/Au/Au tri-layer films to detect soft x-rays. They are equipped with an overhanging photon absorber. We reduce the fabrication complexity by integrating the sensor patterning with the tri-layer film formation. We determine the electro-thermal parameters of the sensors through a series of resistance vs. temperature and current vs. voltage measurements. We also demonstrate their energy-resolving capability by using a55Fe radioactive x-ray source. The best energy resolution was approximately 6.66 eV at 5.9 keV, with a theoretical count rate of 500 Hz.展开更多
Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers...Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers, especially those controlled by high-bandwidth digital flux-locked-loop circuits. A large linear flux range conduces to accurately measuring the input signal and also increasing the multiplexing factor in the time-division multiplexed(TDM) readout scheme of the TES array. In this work, we report that the linear flux range of an SQUID can be improved by using self-feedback effect. When the SQUID loop is designed to be asymmetric, a voltage-biased SQUID shows an asymmetric current–flux(I–Φ) response curve. The linear flux range is improved along the I–Φ curve with a shallow slope. The experimental results accord well with the numerical simulations. The asymmetric SQUID will be able to serve as a building block in the development of the TDM readout systems for large TES arrays.展开更多
基金supported by the National Natural Science Foundation of China(12004252,52272265,U1932217,11974246,52072400,52025025,and 92065109)the National Key R&D Program of China(2018YFA0704300,2021YFA1401800,2018YFE0202601,2020YFA0308800,and 2022YFA1403400)+2 种基金Shanghai Science and Technology Plan(21DZ2260400)Beijing Natural Science Foundation(Z190010,Z210006,and Z190006)the support from the Analytical Instrumentation Center(#SPST-AIC10112914),School of Physical Science and Technology(SPST),ShanghaiTech University。
文摘雌激素受体(Estrogen receptor,esr)介导雌激素影响相关基因表达,从而调控哺乳动物的生长和繁殖机能。为了探讨esr基因的反转录转座子多态性对猪生长性能的影响,文中应用比较基因组学和生物信息学方法,预测猪esr基因的反转录转座子插入位点,采用PCR方法验证不同品种猪中插入多态性,并将该基因型与大白猪性能进行关联分析。结果显示,esr1和esr2基因验证后得到4个反转录转座子多态性位点,分别是位于esr1基因内含子2的esr1-SINE-RIP1、位于内含子5的esr1-LINE-RIP2和esr1-SINE-RIP3,以及位于esr2基因内含子1的esr2-LINE-RIP。其中esr1-SINE-RIP1的287 bp SINE插入对大白猪的活体背膘厚和100 kg体重背膘厚有显著影响(P<0.05),纯合有插入(SINE^(+/+))的活体背膘厚和100kg体重背膘厚显著高于杂合有插入(SINE^(+/-))和无插入(SINE^(-/-))型。这表明esr1-SINE-RIP1位点可作为分子标记辅助选育大白猪的背膘厚性状。
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000)the Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX02)+2 种基金China National Space Administration (CNSA) (Grant No. D050104)the grant for low energy gamma-ray detection research based on SQUID techniquesupported by the Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences。
文摘The proximity effect to reduce the transition temperature of a superconducting film is frequently used in transitionedge sensors. Here, we develop these transition-edge sensors using Mo/Au/Au tri-layer films to detect soft x-rays. They are equipped with an overhanging photon absorber. We reduce the fabrication complexity by integrating the sensor patterning with the tri-layer film formation. We determine the electro-thermal parameters of the sensors through a series of resistance vs. temperature and current vs. voltage measurements. We also demonstrate their energy-resolving capability by using a55Fe radioactive x-ray source. The best energy resolution was approximately 6.66 eV at 5.9 keV, with a theoretical count rate of 500 Hz.
基金Project supported by the Fund from China National Space Administration (CNSA) (Grant No. D050104)the Fund for Low Energy Gamma Ray Detection Research Based on SQUID Techniquethe Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences。
文摘Superconducting quantum interference devices(SQUIDs) are low-noise amplifiers that are essential for the readouts of translation edge sensors(TESs). The linear flux range is an important parameter for SQUID amplifiers, especially those controlled by high-bandwidth digital flux-locked-loop circuits. A large linear flux range conduces to accurately measuring the input signal and also increasing the multiplexing factor in the time-division multiplexed(TDM) readout scheme of the TES array. In this work, we report that the linear flux range of an SQUID can be improved by using self-feedback effect. When the SQUID loop is designed to be asymmetric, a voltage-biased SQUID shows an asymmetric current–flux(I–Φ) response curve. The linear flux range is improved along the I–Φ curve with a shallow slope. The experimental results accord well with the numerical simulations. The asymmetric SQUID will be able to serve as a building block in the development of the TDM readout systems for large TES arrays.