In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differe...In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differences between these two regions and their influence on the outbreak of the Indian summer monsoon (ISM) are explored. Composite analysis and correlation analysis are applied. The results indicate that the intraseasonal variability of AHSS is signi- ficant in SA but insignificant in the SIO. Large inland areas in the Northern Hemisphere still behave as a heat sink in March, similar to the situation in winter. Significant differences are found in the distribution of AHSS between the ocean and land, with distinct land-ocean thermal contrast in April, and the pattern presents in the transitional period right before the ISM onset. In May, strong heat centers appear over the areas from the Indochina Peninsula to the Bay of Bengal and south of the Tibetan Plateau (TP), which is a typical pattern of AHSS distribution during the monsoon season. The timing of SA-SIO thermal difference turning positive is about 15 pentads in advance of the onset of the ISM. Then, after the thermal differences have turned positive, a pre-monsoon meridional circulation cell develops due to the near-surface heat center and the negative thermal contrast center, after which the meridional circulation of the ISM gradually establishes. In years of early (late) conversion of the SASIO thermal difference turning from neg- ative to positive, the AHSS at all levels over the TP and SIO converts later (earlier) than normal and the establish- ment of the ascending and descending branches of the ISM's meridional circulation is later (earlier) too. Meanwhile, the establishment of the South Asian high over the TP is later (earlier) than normal and the conversion of the Mas- carene high from winter to summer mode occurs anomalously late (early). As a result, the onset of the ISM is later (earlier) than norma展开更多
To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we in- vestigate the evolutionary characteristics and possible formation mechanisms for severe storms in the ra...To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we in- vestigate the evolutionary characteristics and possible formation mechanisms for severe storms in the rainbands of Typhoon Mujigae, which occurred during 2-5 October 2015, based on the NCEP-NCAR reanalysis data, conventional observations, and Doppler radar data. For the rainbands far from the inner core (eye and eyewall) of Mujigae (dis- tance of approximately 70-800 kin), wind speed first increased with the radius expanding from the inner core, and then decreased as the radius continued to expand. The Rankine Vortex Model was used to explore such variations in wind speed. The areas of strong stormy rainbands were mainly located in the northeast quadrant of Mujigae, and overlapped with the areas of high winds within approximately 300-550 km away from the inner core, where the strong winds were conducive to the development of strong storms. A severe convective cell in the rainbands de- veloped into waterspout at approximately 500 km to the northeast of the inner core, when Mujigae was strengthening before it made landfall. Two severe convective cells in the rainbands developed into two tornadoes at approximately 350 km to the northeast of the inner core after Mujigae made landfall. The radar echo bands enhanced to 60 dBZ when mesocyclones occurred in the rainbands and induced tornadoes. The radar echoes gradually weakened after the mesocyclones weakened. The tops of parent clouds of the mesocyclones elevated at first, and then suddenly dropped about 20 min before the tornadoes appeared. Thereby, the cloud top variation has the potential to be used as an early warning of tornado occurrence.展开更多
基金Supported by the National Natural Science Foundation of China(91537214,41275079,41405069,41305077,and 41505078)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506001)+1 种基金Scientific Research Fund of Sichuan Education Department(16ZA0203)Chengdu University of Information Technology Scientific Research Fund(J201516,J201518,and KYTZ201517)
文摘In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differences between these two regions and their influence on the outbreak of the Indian summer monsoon (ISM) are explored. Composite analysis and correlation analysis are applied. The results indicate that the intraseasonal variability of AHSS is signi- ficant in SA but insignificant in the SIO. Large inland areas in the Northern Hemisphere still behave as a heat sink in March, similar to the situation in winter. Significant differences are found in the distribution of AHSS between the ocean and land, with distinct land-ocean thermal contrast in April, and the pattern presents in the transitional period right before the ISM onset. In May, strong heat centers appear over the areas from the Indochina Peninsula to the Bay of Bengal and south of the Tibetan Plateau (TP), which is a typical pattern of AHSS distribution during the monsoon season. The timing of SA-SIO thermal difference turning positive is about 15 pentads in advance of the onset of the ISM. Then, after the thermal differences have turned positive, a pre-monsoon meridional circulation cell develops due to the near-surface heat center and the negative thermal contrast center, after which the meridional circulation of the ISM gradually establishes. In years of early (late) conversion of the SASIO thermal difference turning from neg- ative to positive, the AHSS at all levels over the TP and SIO converts later (earlier) than normal and the establish- ment of the ascending and descending branches of the ISM's meridional circulation is later (earlier) too. Meanwhile, the establishment of the South Asian high over the TP is later (earlier) than normal and the conversion of the Mas- carene high from winter to summer mode occurs anomalously late (early). As a result, the onset of the ISM is later (earlier) than norma
基金Supported by the National Basic Research and Development(973)Program of China(2013CB430102)Open Research Fund of Key Laboratory of Geographic Information Science(KLGIS2015A01)+3 种基金China Meteorological Administration Special Public Welfare Research Fund(GYHY201306040,GYHY201306078,and GYHY201506001)National Natural Science Foundation of China(91537214,41275079,41305077,41405069,91537214,41505078,and 41305031)Research Innovation Program for College Graduates of Jiangsu Province(KYZZ-0246)Open Research Fund of State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2016LASW-B12)
文摘To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we in- vestigate the evolutionary characteristics and possible formation mechanisms for severe storms in the rainbands of Typhoon Mujigae, which occurred during 2-5 October 2015, based on the NCEP-NCAR reanalysis data, conventional observations, and Doppler radar data. For the rainbands far from the inner core (eye and eyewall) of Mujigae (dis- tance of approximately 70-800 kin), wind speed first increased with the radius expanding from the inner core, and then decreased as the radius continued to expand. The Rankine Vortex Model was used to explore such variations in wind speed. The areas of strong stormy rainbands were mainly located in the northeast quadrant of Mujigae, and overlapped with the areas of high winds within approximately 300-550 km away from the inner core, where the strong winds were conducive to the development of strong storms. A severe convective cell in the rainbands de- veloped into waterspout at approximately 500 km to the northeast of the inner core, when Mujigae was strengthening before it made landfall. Two severe convective cells in the rainbands developed into two tornadoes at approximately 350 km to the northeast of the inner core after Mujigae made landfall. The radar echo bands enhanced to 60 dBZ when mesocyclones occurred in the rainbands and induced tornadoes. The radar echoes gradually weakened after the mesocyclones weakened. The tops of parent clouds of the mesocyclones elevated at first, and then suddenly dropped about 20 min before the tornadoes appeared. Thereby, the cloud top variation has the potential to be used as an early warning of tornado occurrence.