Integrated energy distribution system(IEDS)is one of the integrated energy and power system forms,which involves electricity/gas/cold/heat and other various energy forms.The energy coupling relationship is close and c...Integrated energy distribution system(IEDS)is one of the integrated energy and power system forms,which involves electricity/gas/cold/heat and other various energy forms.The energy coupling relationship is close and complex.IEDS is the focus of regional energy internet research and development at home and abroad.Compared with the traditional power distribution system,IEDS through the multi-energy coupling link comprehensive utilization,effectively improve the distribution system economy,safety,reliability,flexibility and toughness,but also to ease the regional energy system environmental pressure.IEDS is an important direction for the future development of energy systems,and its related research and practice on China’s energy system development also has important practical and strategic significance.This paper summarizes the related researches of the IEDS and explores the energy operation characteristics and coupling mechanisms.What’s more,the integrated model of IEDS is summarized.On these bases,this paper discusses and prospects some key issues such as joint planning,optimization control and security analysis,state estimation and situational awareness and generalized demand side management.展开更多
A JERF36 regulation gene, a selection marker gene (NPT-II), and the foreign genes levansucrase (SacB), Vitreoscilla hemoglobin (vgb), and Binary coleopterus insect resistance (BtCry3A+OC-I) were co-transferred into Po...A JERF36 regulation gene, a selection marker gene (NPT-II), and the foreign genes levansucrase (SacB), Vitreoscilla hemoglobin (vgb), and Binary coleopterus insect resistance (BtCry3A+OC-I) were co-transferred into Populus xeuramericana 'Guariento' using biolistic bombardment; 25 kanamycin resistant plants were obtained. The results of PCR and Southern hybridization showed that the foreign genes had been integrated into the genome of P. xeuramericana 'Guariento' and 5 genes were all transferred into 7 poplar plants. The results of a BtCry3A ELISA experiment indicated that the BtCry3A gene was expressed in the 7 transgenic poplar plants, and these plants grew well on coastal saline land.展开更多
Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual...Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.展开更多
Fractures have an extraordinarily negative impact on individuals'quality of life and functional status.Nonunion or disability of fracture is a major health issue with important clinical,social,and economic implica...Fractures have an extraordinarily negative impact on individuals'quality of life and functional status.Nonunion or disability of fracture is a major health issue with important clinical,social,and economic implications.1 Mesenchymal stem cells(MSCs)play an indispensable role in the initiation of the fracture repair process including the formation of a callus which is replaced by new bone.The use of MSCs in the treatment of fractures is very attractive as they can reduce the time of healing and occurrence of nonunion.展开更多
Temperature control,which is directly responsible for the project quality and progress,plays an important role in high arch dam construction.How to discover the rules from a large amount of temperature control informa...Temperature control,which is directly responsible for the project quality and progress,plays an important role in high arch dam construction.How to discover the rules from a large amount of temperature control information collected in order to guide the adjustment of temperature control measures to prevent cracks on site is the key scientific problem.In this paper,a mathematic logical model was built firstly by means of a coupling analysis of temperature control system decomposition and coordination for high arch dam.Then,an analysis method for temperature control information was presented based on data mining technology.Furthermore,the data warehouse of temperature control was designed,and the artificial neural network forecasting model for the highest temperature of concrete was also developed.Finally,these methods were applied to a practical project. The result showed that the efficiency and precision of temperature control was improved,and rationality and scientificity of management and decision-making were strengthened.All of these researches provided an advanced analysis method for temperature control in the high arch dam construction process.展开更多
To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals ...To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W o D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively.展开更多
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of...Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.展开更多
Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other ...Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a ne展开更多
Ageing is often accompanied with a decline in immune system function,resulting in immune ageing.Numerous studies have focussed on the changes in different lymphocyte subsets in diseases and immunosenescence.The change...Ageing is often accompanied with a decline in immune system function,resulting in immune ageing.Numerous studies have focussed on the changes in different lymphocyte subsets in diseases and immunosenescence.The change in immune phenotype is a key indication of the diseased or healthy status.However,the changes in lymphocyte number and phenotype brought about by ageing have not been comprehensively analysed.Here,we analysed T and natural killer(NK)cell subsets,the phenotype and cell differentiation states in 43,096 healthy individuals,aged 20–88 years,without known diseases.Thirty-six immune parameters were analysed and the reference ranges of these subsets were established in different age groups divided into 5-year intervals.The data were subjected to random forest machine learning for immune-ageing modelling and confirmed using the neural network analysis.Our initial analysis and machine modelling prediction showed that na.ve T cells decreased with ageing,whereas central memory T cells(Tcm)and effector memory T cells(Tem)increased cluster of differentiation(CD)28-associated T cells.This is the largest study to investigate the correlation between age and immune cell function in a Chinese population,and provides insightful differences,suggesting that healthy adults might be considerably influenced by age and sex.The age of a person's immune system might be different from their chronological age.Our immune-ageing modelling study is one of the largest studies to provide insights into‘immune-age’rather than‘biological-age’.Through machine learning,we identified immune factors influencing the most through ageing and built a model for immune-ageing prediction.Our research not only reveals the impact of age on immune parameter differences within the Chinese population,but also provides new insights for monitoring and preventing some diseases in clinical practice.展开更多
In recent years, the authors have extended the traditional interval method into the time dimension to develop a new mathematical tool called the “interval process model” for quantifying time-varying or dynamic uncer...In recent years, the authors have extended the traditional interval method into the time dimension to develop a new mathematical tool called the “interval process model” for quantifying time-varying or dynamic uncertainties. This model employs upper and lower bounds instead of precise probability distributions to quantify uncertainty in a parameter at any given time point. It is anticipated to complement the conventional stochastic process model in the coming years owing to its relatively low dependence on experimental samples and ease of understanding for engineers. Building on our previous work, this paper proposes a spectrum analysis method to describe the frequency domain characteristics of an interval process, further strengthening the theoretical foundation of the interval process model and enhancing its applicability for complex engineering problems. In this approach, we first define the zero midpoint function interval process and its auto/cross-power spectral density(PSD) functions. We also deduce the relationship between the auto-PSD function and the auto-covariance function of the stationary zero midpoint function interval process. Next, the auto/cross-PSD function matrices of a general interval process are defined, followed by the introduction of the concepts of PSD function matrix and cross-PSD function matrix for interval process vectors. The spectrum analysis method is then applied to random vibration problems, leading to the creation of a spectrum-analysis-based interval vibration analysis method that determines the PSD function for the system displacement response under stationary interval process excitations. Finally, the effectiveness of the formulated spectrum-analysis-based interval vibration analysis approach is verified through two numerical examples.展开更多
The development of biochar-based granule-like adsorbents suitable for scaled-up application has been attracting increasing attention in the field of water treatment.Herein,a new formable porous granulated biochar load...The development of biochar-based granule-like adsorbents suitable for scaled-up application has been attracting increasing attention in the field of water treatment.Herein,a new formable porous granulated biochar loaded with La-Fe(hydr)oxides/montmorillonite(LaFe/MB)was fabricated via a granulation and pyrolysis process for enhanced phosphorus(P)removal from wastewater.Montmorillonite acted as a binder that increased the size of the granulated biochar,while the use of Fe promoted the surface charge and facilitated the dispersion of La,which was responsible for selective phosphate removal.LaFe/MB exhibited rapid phosphate adsorption kinetics and a high maximum adsorption capacity(Langmuir model,52.12 mg P g^(−1)),which were better than those of many existing granulated materials.The desorption and recyclability experiments showed that LaFe/MB could be regenerated,and maintained 76.7%of its initial phosphate adsorption capacity after four adsorption cycles.The high hydraulic endurance strength retention rate of the developed material(91.6%)suggested high practical applicability in actual wastewater.Electro-static attraction,surface precipitation,and inner-sphere complexation via ligand exchange were found to be involved in selective P removal over a wide pH range of 3-9.The thermodynamic parameters were determined,which revealed the feasibility and spontaneity of adsorption.Based on approximate site energy distribution analyses,high distribution frequency contributed to efficient P removal.The research results provide a new insight that LaFe/MB shows great application prospects for advanced phosphate removal from wastewater.展开更多
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio...Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs.展开更多
Triboelectric nanogenerators(TENGs)based on conjunctive effects of contact electrification(CE)and electrostatic induction are emerging as a new mechanical energy harvesting and sensing technique for promising applicat...Triboelectric nanogenerators(TENGs)based on conjunctive effects of contact electrification(CE)and electrostatic induction are emerging as a new mechanical energy harvesting and sensing technique for promising applications in smart wearables,Internet of Things(IoTs),etc.The surface microstructure of a flexible triboelectric material for the increase of surface area is a common strategy for performance enhancement of TENGs,but the real roles of surface microstructures on their output performance are still not explicit due to the lack of suitable analysis tool and rational experimental design.Taking advantages of the surface-sensitive characteristic of CE effect,this work exploited and developed the electric signal patterns generated by single impact of TENGs as a kind of CE spectrum to analyze and speculate the real roles of surface microstructures of flexible triboelectric materials on the output performance of TENGs.Firstly,four different kinds of surface microstructures,namely planar surface(PS)and three combinations of two basic surface microstructures,i.e.,micro lens arrays(MLAs),fabric textures(FTs),and hierarchical structures of MLAs on FTs(MLA/FTs),were elaborately designed and introduced for an identical triboelectric material(i.e.,silicone elastomer)by a(micro)molding synthesis route.Then they were used for assembly of TENGs based on vertical contact mode to conduct performance evaluation under the same triggering conditions.Through systematic analysis and comparison of their highly repeatable CE spectra by programmed machine,it was found that the surface microstructure for a flexible triboelectric material to maximally enhance the output performance of a TENG shall achieve a positive synergistic effect of increasing triboelectric charge density,effective contact area and contacting/separating velocity,rather than simple increase of its surface area.展开更多
To stabilize Ru nanoparticles against sintering is an urgent problem in the utilization of Ru-based catalysts for NH3 synthesis.In the present study,we used Ru-containing ZSM-5 as seeds to crystallize ZSM-5,and the re...To stabilize Ru nanoparticles against sintering is an urgent problem in the utilization of Ru-based catalysts for NH3 synthesis.In the present study,we used Ru-containing ZSM-5 as seeds to crystallize ZSM-5,and the resulted Ru@ZSM-5 catalyst is highly resistant against Ru sintering.According to the results of diffuse reflectance infrared fourier transform spectroscopy(DRIFTS)and transmission electron microscopy(TEM)analyses,the average size of Ru nanoparticles is around 3.6 nm,which is smaller than that of Ru/ZSM-5-IWI prepared by incipient wetness impregnation.In NH3 synthesis(N2:H2=1:3)at 400℃and 1 MPa,Ru@ZSM-5 displays a formation rate of 5.84 mmolNH3 gcat^-1 h^-1,which is much higher than that of Ru/ZSM-5-IWI(2.13 mmolNH3 gcat^-1 h^-1).According to the results of TEM,N2-temperatureprogrammed desorption(N2-TPD),X-ray photoelectron spectroscopy(XPS)and X-ray absorption fine structure(XAFS)studies,it is deduced that the superior performance of Ru@ZSM-5 is attributable to the small particle size and the ample existence of metallic Ru0 sites.This method of zeolite encapsulation is a feasible way to stabilize Ru nanoparticles for NH3 synthesis.展开更多
Hydrothermal carbonization(HTC)technology has increasingly been considered for biomass conversion applications because of its economic and environmental advantages.As an HTC conversion product,hydrochar has been widel...Hydrothermal carbonization(HTC)technology has increasingly been considered for biomass conversion applications because of its economic and environmental advantages.As an HTC conversion product,hydrochar has been widely used in the agricultural and environmental fields for decades.A CiteSpace-based system analysis was used for conducting a bibliometric study to understand the state of hydrochar environmental application research from 2011 to 2021.Researchers had a basic understanding of hydrochar between 2011 and 2016 when they discovered hydrochar could apply to agricultural and environmental improvement projects.Keyword clustering results of the literature published in 2017-2021 showed that soil quality and plant growth were the major research topics,followed by carbon capture and greenhouse gas emissions,organic pollutant removal,and heavy metal adsorption and its bioavailability.This review also pointed out the challenge and perspective for hydrochar research and application,namely:(1)the environmental effects of hydrochar on soils need to be clarified in terms of the scope and conditions;(2)the influence of soil microorganisms needs to be investigated to illustrate the impact of hydrochar on greenhouse gas emissions;(3)combined heavy metal and organic contaminant sorption experiments for hydrochar need to be conducted for large-scale applications;(4)more research needs to be conducted to reveal the economic benefits of hydrochar and the coupling of hydrochar with anaerobic digestion technology.This review suggested that it would be valuable to create a database that contains detailed information on how hydrochar got from different sources,and different preparation conditions can be applied in the environmental field.展开更多
Epigenetic modifications have been proved to be a powerful way to activate silent gene clusters and lead to diverse secondary metabolites in fungi. Previously, inactivation of a histone H3 deacetylase in Calcarisporiu...Epigenetic modifications have been proved to be a powerful way to activate silent gene clusters and lead to diverse secondary metabolites in fungi. Previously, inactivation of a histone H3 deacetylase in Calcarisporium arbuscula had led to pleiotropic activation and overexpression of more than 75% of the biosynthetic genes and isolation of ten compounds. Further investigation of the crude extract of C. arbuscula Δhda A strain resulted in the isolation of twelve new diterpenoids including three cassanes(1-3), one cleistanthane(4), six pimaranes(5-10), and two isopimaranes(11 and 12) along with two know cleistanthane analogues. Their structures were elucidated by extensive NMR spectroscopic data analysis. Compounds 2 and 4 showed potent inhibitory effects on the expression of MMP1 and MMP2(matrix metalloproteinases family) in human breast cancer(MCF-7) cells.展开更多
Endophytic fungi are promising producers of bioactive small molecules.Bioinformatic analysis of the genome of an endophytic fungus Penicillium dangeardii revealed 43 biosynthetic gene clusters,exhibited its strong abi...Endophytic fungi are promising producers of bioactive small molecules.Bioinformatic analysis of the genome of an endophytic fungus Penicillium dangeardii revealed 43 biosynthetic gene clusters,exhibited its strong ability to produce numbers of secondary metabolites.However,this strain mainly produce rubratoxins alone with high yield in varied culture conditions,suggested most gene clusters are silent.Efforts for mining the cryptic gene clusters in P.dangeardii,including epigenetic regulation and one-strain-many-compounds(OSMAC)approach were failed probably due to the high yield of rubratoxins.A metabolic shunting strategy by deleting the key gene for rubratoxins biosynthesis combining with optimization of culture condition successfully activated multiple silent genes encoding for other polyketide synthases(PKSs),and led to the trace compounds detectable.As a result,a total of 23 new compounds including azaphilone monomers,dimers,turimers with unprecedented polycyclic bridged heterocycle and spiral structures,as well as siderophores were identified.Some compounds showed significant cytotoxicities,anti-inflammatory or antioxidant activities.The attractive dual PKS s gene clusters for azaphilones biosynthesis were mined by bioinformatic analysis and overexpression of a pathway specific transcription factor.Our work therefor provides an efficient approach to mine the chemical diversity of endophytic fungi.展开更多
The rapidly developing resistance of cancers to chemotherapy agents and the severe cytotoxicity of such agents to normal cells are major stumbling blocks in current cancer treatments.Most current chemotherapy agents h...The rapidly developing resistance of cancers to chemotherapy agents and the severe cytotoxicity of such agents to normal cells are major stumbling blocks in current cancer treatments.Most current chemotherapy agents have significant cytotoxicity,which leads to devastating adverse effects and results in a substandard quality of life,including increased daily morbidity and premature mortality.The death receptor of tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)can sidestep p53-dependent pathways to induce tumor cell apoptosis without damaging most normal cells.However,various cancer cells can develop resistance to TRAIL-induced apoptosis via different pathways.Therefore,it is critical to find an efficient TRAIL sensitizer to reverse the resistance of tumor cells to TRAIL,and to reinforce TRAIL’s ability to induce tumor cell apoptosis.In recent years,traditional Chinese medicines and their active ingredients have shown great potential to trigger apoptotic cell death in TRAIL-resistant cancer cell lines.This review aims to collate information about Chinese medicines that can effectively reverse the resistance of tumor cells to TRAIL and enhance TRAIL’s ability to induce apoptosis.We explore the therapeutic potential of TRAIL and provide new ideas for the development of TRAIL therapy and the generation of new anticancer drugs for human cancer treatment.This study involved an extensive review of studies obtained from literature searches of electronic databases such as Google Scholar and PubMed."TRAIL sensitize"and"Chinese medicine"were the search keywords.We then isolated newly published studies on the mechanisms of TRAIL-induced apoptosis.The name of each plant was validated using certified databases such as The Plant List.This study indicates that TRAIL can be combined with different Chinese medicine components through intrinsic or extrinsic pathways to promote cancer cell apoptosis.It also demonstrates that the active ingredients of traditional Chinese medicines enhance the sensitivity of cancer c展开更多
Stimulator of interferon genes(STING)is an adaptor protein that is critical for effective innate antiviral and antitumor immunity.The activity of STING is heavily regulated by protein ubiquitination,which is fine-tune...Stimulator of interferon genes(STING)is an adaptor protein that is critical for effective innate antiviral and antitumor immunity.The activity of STING is heavily regulated by protein ubiquitination,which is fine-tuned by both E3 ubiquitin ligases and deubiquitinases.Here,we report that the deubiquitinase OTUD5 interacts with STING,cleaves its K48-linked polyubiquitin chains,and promotes its stability.Consistently,knockout of OTUD5 resulted in faster turnover of STING and subsequently impaired type I IFN signaling following cytosolic DNA stimulation.More importantly,Lyz2-Cre Otud5^(fl/Y) mice and CD11-Cre Otud5^(fl/Y) mice showed more susceptibility to herpes simplex virus type 1(HSV-1)infection and faster development of melanomas than their corresponding control littermates,indicating that OTUD5 is indispensable for STING-mediated antiviral and antitumor immunity.Our data suggest that OTUD5 is a novel checkpoint in the cGAS-STING cytosolic DNA sensing pathway.展开更多
OBJECTIVE:To investigate the effects of artemisinin against proteinuria and glomerular filtration barrier damage in rats with adriamycin-induced nephropathy,and the potential mechanism underpinned the action.METHODS:F...OBJECTIVE:To investigate the effects of artemisinin against proteinuria and glomerular filtration barrier damage in rats with adriamycin-induced nephropathy,and the potential mechanism underpinned the action.METHODS:Forty adriamycin rats were randomly divided into two groups with the ratio of 1︰3;the small-number group served as control group(n=10),and the rats in the large-number group were treated with adriamycin to induce nephropathy;then they were further randomly assigned into 3subgroups:benazepril group(n=10),artemisiningroup(n=10),and adriamycin group(n=10).The benazepril group and artemisinin group were treated with benazepril suspl(5.0 mg/kg daily)and artemisinin suspl(150 mg/kg daily)respectively after being modeled;those in the control group and adriamycin group were intragastrically administered an equivalent volume of distilled water every day.The treatment after model establishment lasted for a total of 4 weeks.The 24 h uric protein,blood biochemicals,renal pathological changes,renal ultrastrutural changes,Nephrin and Podocin proteins and gene expressions were measured by Coomassie brilliant blue assay,completely automatic biochemical analyzer,light microscope,electron microscopy,Western blot and reverse transcription polymerase chain reaction,respectively.RESULTS:The rats in adriamycin group showed a significant increase in 24 h uric protein excretion,serum total cholesterol(TC),triglyceride(TG),blood urea nitrogen(BUN),serum creatinine(Scr)and decrease in albumin(Alb)(P<0.05 or P<0.01).Compared with adriamycin group,artemisinin could reduce uric protein excretion,decrease the serum TC,TG elevation,increase the serum Alb level,up-regulate the expressions of Nephrin and Podocin(P<0.05 or P<0.01),but no statistical significance effects on the levels of BUN,Scr in artemisinin group(P>0.05).The renal pathological and ultrastrutural observation indicate that artemisinin could attenuate the severity of foot process effacement and fusion in the nephropathic rats.CONCLUSION:Artemisinin might have an effe展开更多
基金This work was supported by the National High Technology Research and Development Program(863 Program)of China(2015AA050403)Natural Science Foundation of Tianjin(17JCQNJC06600)+2 种基金Independent Innovation Foundation of Tianjin University(Research on Key Technology of Distributed Demand Response)Ocean Engineering Equipment and Technical Think Tank Joint Project of Qingdao(201707071003)the Distributed Energy and Microgrid Project conducted in collaboration with APPLIED ENERGY UNiLAB-DEM.
文摘Integrated energy distribution system(IEDS)is one of the integrated energy and power system forms,which involves electricity/gas/cold/heat and other various energy forms.The energy coupling relationship is close and complex.IEDS is the focus of regional energy internet research and development at home and abroad.Compared with the traditional power distribution system,IEDS through the multi-energy coupling link comprehensive utilization,effectively improve the distribution system economy,safety,reliability,flexibility and toughness,but also to ease the regional energy system environmental pressure.IEDS is an important direction for the future development of energy systems,and its related research and practice on China’s energy system development also has important practical and strategic significance.This paper summarizes the related researches of the IEDS and explores the energy operation characteristics and coupling mechanisms.What’s more,the integrated model of IEDS is summarized.On these bases,this paper discusses and prospects some key issues such as joint planning,optimization control and security analysis,state estimation and situational awareness and generalized demand side management.
文摘A JERF36 regulation gene, a selection marker gene (NPT-II), and the foreign genes levansucrase (SacB), Vitreoscilla hemoglobin (vgb), and Binary coleopterus insect resistance (BtCry3A+OC-I) were co-transferred into Populus xeuramericana 'Guariento' using biolistic bombardment; 25 kanamycin resistant plants were obtained. The results of PCR and Southern hybridization showed that the foreign genes had been integrated into the genome of P. xeuramericana 'Guariento' and 5 genes were all transferred into 7 poplar plants. The results of a BtCry3A ELISA experiment indicated that the BtCry3A gene was expressed in the 7 transgenic poplar plants, and these plants grew well on coastal saline land.
文摘Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices.
基金supported by the National Natural Science Foundation of China(No.81871778,81874000,82272505).
文摘Fractures have an extraordinarily negative impact on individuals'quality of life and functional status.Nonunion or disability of fracture is a major health issue with important clinical,social,and economic implications.1 Mesenchymal stem cells(MSCs)play an indispensable role in the initiation of the fracture repair process including the formation of a callus which is replaced by new bone.The use of MSCs in the treatment of fractures is very attractive as they can reduce the time of healing and occurrence of nonunion.
基金supported by the National Natural Science Foundation of China(Grant No.50539120)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No. 51021004)the National Natural Science Foundation of China(Grant No.90815019)
文摘Temperature control,which is directly responsible for the project quality and progress,plays an important role in high arch dam construction.How to discover the rules from a large amount of temperature control information collected in order to guide the adjustment of temperature control measures to prevent cracks on site is the key scientific problem.In this paper,a mathematic logical model was built firstly by means of a coupling analysis of temperature control system decomposition and coordination for high arch dam.Then,an analysis method for temperature control information was presented based on data mining technology.Furthermore,the data warehouse of temperature control was designed,and the artificial neural network forecasting model for the highest temperature of concrete was also developed.Finally,these methods were applied to a practical project. The result showed that the efficiency and precision of temperature control was improved,and rationality and scientificity of management and decision-making were strengthened.All of these researches provided an advanced analysis method for temperature control in the high arch dam construction process.
基金supported by the National Natural Science Foundation of China(Grant No.40374054).
文摘To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W o D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively.
基金supported by the National Natural Science Foundation of China,Nos.82102295(to WG),82071339(to LG),82001119(to JH),and 81901994(to BZ).
文摘Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
基金This work was supported by the National Natural Science Foundation of China[21978070]Natural Science Foundation of Henan[212300410032,232103810065]+2 种基金Key Research and Development Projects of Henan Province[221111320500]Program for Science&Technology Innovation Talents in Universities of Henan Province[20HASTIT034]Henan Province“Double First-Class”Project-Food Science and Technology.
文摘Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a ne
基金supported by National Key Research and Development Program of China(2020YFA0803502 to Z.Y.)National Natural Science Foundation of China(32030036 and 31830021 to Z.Y.)+6 种基金the 111 Project(B16021 to Z.Y.)Natural Science Foundation of China(81971301 and 32050410285 to O.J.L.)Guangzhou Planned Project of Science and Technology(202002020039 to O.J.L.)Guangdong Basic and Applied Basic Research Foundation(2021A1515110734 to Z.R.)Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology,The First Affiliated Hospital,Sun Yat-sen University,Guangzhou,China(2013A061401007,2017B030314018,2020B1212060026)Guangdong Provincial International Cooperation Base of Science and Technology(Organ Transplantation)The First Affiliated Hospital,Sun Yat-sen University,Guangzhou,China(2015B050501002,2020A0505020003).
文摘Ageing is often accompanied with a decline in immune system function,resulting in immune ageing.Numerous studies have focussed on the changes in different lymphocyte subsets in diseases and immunosenescence.The change in immune phenotype is a key indication of the diseased or healthy status.However,the changes in lymphocyte number and phenotype brought about by ageing have not been comprehensively analysed.Here,we analysed T and natural killer(NK)cell subsets,the phenotype and cell differentiation states in 43,096 healthy individuals,aged 20–88 years,without known diseases.Thirty-six immune parameters were analysed and the reference ranges of these subsets were established in different age groups divided into 5-year intervals.The data were subjected to random forest machine learning for immune-ageing modelling and confirmed using the neural network analysis.Our initial analysis and machine modelling prediction showed that na.ve T cells decreased with ageing,whereas central memory T cells(Tcm)and effector memory T cells(Tem)increased cluster of differentiation(CD)28-associated T cells.This is the largest study to investigate the correlation between age and immune cell function in a Chinese population,and provides insightful differences,suggesting that healthy adults might be considerably influenced by age and sex.The age of a person's immune system might be different from their chronological age.Our immune-ageing modelling study is one of the largest studies to provide insights into‘immune-age’rather than‘biological-age’.Through machine learning,we identified immune factors influencing the most through ageing and built a model for immune-ageing prediction.Our research not only reveals the impact of age on immune parameter differences within the Chinese population,but also provides new insights for monitoring and preventing some diseases in clinical practice.
基金supported by the National Natural Science Foundation of China (Grant No. 52105253)the State Key Program of National Science Foundation of China (Grant No.52235005)。
文摘In recent years, the authors have extended the traditional interval method into the time dimension to develop a new mathematical tool called the “interval process model” for quantifying time-varying or dynamic uncertainties. This model employs upper and lower bounds instead of precise probability distributions to quantify uncertainty in a parameter at any given time point. It is anticipated to complement the conventional stochastic process model in the coming years owing to its relatively low dependence on experimental samples and ease of understanding for engineers. Building on our previous work, this paper proposes a spectrum analysis method to describe the frequency domain characteristics of an interval process, further strengthening the theoretical foundation of the interval process model and enhancing its applicability for complex engineering problems. In this approach, we first define the zero midpoint function interval process and its auto/cross-power spectral density(PSD) functions. We also deduce the relationship between the auto-PSD function and the auto-covariance function of the stationary zero midpoint function interval process. Next, the auto/cross-PSD function matrices of a general interval process are defined, followed by the introduction of the concepts of PSD function matrix and cross-PSD function matrix for interval process vectors. The spectrum analysis method is then applied to random vibration problems, leading to the creation of a spectrum-analysis-based interval vibration analysis method that determines the PSD function for the system displacement response under stationary interval process excitations. Finally, the effectiveness of the formulated spectrum-analysis-based interval vibration analysis approach is verified through two numerical examples.
基金National Key Research and Development Program of China(2021YFD1700805)National Natural Science Foundation of China(41807132,22078136,41877090)the Jiangsu Province Agricultural Independent Innovation Fund(CX(19)2003).
文摘The development of biochar-based granule-like adsorbents suitable for scaled-up application has been attracting increasing attention in the field of water treatment.Herein,a new formable porous granulated biochar loaded with La-Fe(hydr)oxides/montmorillonite(LaFe/MB)was fabricated via a granulation and pyrolysis process for enhanced phosphorus(P)removal from wastewater.Montmorillonite acted as a binder that increased the size of the granulated biochar,while the use of Fe promoted the surface charge and facilitated the dispersion of La,which was responsible for selective phosphate removal.LaFe/MB exhibited rapid phosphate adsorption kinetics and a high maximum adsorption capacity(Langmuir model,52.12 mg P g^(−1)),which were better than those of many existing granulated materials.The desorption and recyclability experiments showed that LaFe/MB could be regenerated,and maintained 76.7%of its initial phosphate adsorption capacity after four adsorption cycles.The high hydraulic endurance strength retention rate of the developed material(91.6%)suggested high practical applicability in actual wastewater.Electro-static attraction,surface precipitation,and inner-sphere complexation via ligand exchange were found to be involved in selective P removal over a wide pH range of 3-9.The thermodynamic parameters were determined,which revealed the feasibility and spontaneity of adsorption.Based on approximate site energy distribution analyses,high distribution frequency contributed to efficient P removal.The research results provide a new insight that LaFe/MB shows great application prospects for advanced phosphate removal from wastewater.
基金support by the National Key Research and Development Program of China(Grant No.2018YFA0702400)is gratefully acknowledged.
文摘Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs.
基金supported by the National Natural Science Foundation of China(No.52103278).
文摘Triboelectric nanogenerators(TENGs)based on conjunctive effects of contact electrification(CE)and electrostatic induction are emerging as a new mechanical energy harvesting and sensing technique for promising applications in smart wearables,Internet of Things(IoTs),etc.The surface microstructure of a flexible triboelectric material for the increase of surface area is a common strategy for performance enhancement of TENGs,but the real roles of surface microstructures on their output performance are still not explicit due to the lack of suitable analysis tool and rational experimental design.Taking advantages of the surface-sensitive characteristic of CE effect,this work exploited and developed the electric signal patterns generated by single impact of TENGs as a kind of CE spectrum to analyze and speculate the real roles of surface microstructures of flexible triboelectric materials on the output performance of TENGs.Firstly,four different kinds of surface microstructures,namely planar surface(PS)and three combinations of two basic surface microstructures,i.e.,micro lens arrays(MLAs),fabric textures(FTs),and hierarchical structures of MLAs on FTs(MLA/FTs),were elaborately designed and introduced for an identical triboelectric material(i.e.,silicone elastomer)by a(micro)molding synthesis route.Then they were used for assembly of TENGs based on vertical contact mode to conduct performance evaluation under the same triggering conditions.Through systematic analysis and comparison of their highly repeatable CE spectra by programmed machine,it was found that the surface microstructure for a flexible triboelectric material to maximally enhance the output performance of a TENG shall achieve a positive synergistic effect of increasing triboelectric charge density,effective contact area and contacting/separating velocity,rather than simple increase of its surface area.
基金supported by the National Science Fund for Distinguished Young Scholars of China(21825801)the National Natural Science Foundation of China(21972019,21978051).
文摘To stabilize Ru nanoparticles against sintering is an urgent problem in the utilization of Ru-based catalysts for NH3 synthesis.In the present study,we used Ru-containing ZSM-5 as seeds to crystallize ZSM-5,and the resulted Ru@ZSM-5 catalyst is highly resistant against Ru sintering.According to the results of diffuse reflectance infrared fourier transform spectroscopy(DRIFTS)and transmission electron microscopy(TEM)analyses,the average size of Ru nanoparticles is around 3.6 nm,which is smaller than that of Ru/ZSM-5-IWI prepared by incipient wetness impregnation.In NH3 synthesis(N2:H2=1:3)at 400℃and 1 MPa,Ru@ZSM-5 displays a formation rate of 5.84 mmolNH3 gcat^-1 h^-1,which is much higher than that of Ru/ZSM-5-IWI(2.13 mmolNH3 gcat^-1 h^-1).According to the results of TEM,N2-temperatureprogrammed desorption(N2-TPD),X-ray photoelectron spectroscopy(XPS)and X-ray absorption fine structure(XAFS)studies,it is deduced that the superior performance of Ru@ZSM-5 is attributable to the small particle size and the ample existence of metallic Ru0 sites.This method of zeolite encapsulation is a feasible way to stabilize Ru nanoparticles for NH3 synthesis.
基金National Natural Science Foundation of China(Nos.42107398,42277332 and 42207453)Natural Science Foundation of Jiangsu Province(BK20210358 and BK20221428)+2 种基金Ecological Environment Research Project of Jiangsu Province(Policy Guidance 2021006)China Postdoctoral Science Foundation(2020M68618)Y.F.Feng thanks the support of“333”High-level Talents Training Project of Jiangsu Province(2022-3-23-083).
文摘Hydrothermal carbonization(HTC)technology has increasingly been considered for biomass conversion applications because of its economic and environmental advantages.As an HTC conversion product,hydrochar has been widely used in the agricultural and environmental fields for decades.A CiteSpace-based system analysis was used for conducting a bibliometric study to understand the state of hydrochar environmental application research from 2011 to 2021.Researchers had a basic understanding of hydrochar between 2011 and 2016 when they discovered hydrochar could apply to agricultural and environmental improvement projects.Keyword clustering results of the literature published in 2017-2021 showed that soil quality and plant growth were the major research topics,followed by carbon capture and greenhouse gas emissions,organic pollutant removal,and heavy metal adsorption and its bioavailability.This review also pointed out the challenge and perspective for hydrochar research and application,namely:(1)the environmental effects of hydrochar on soils need to be clarified in terms of the scope and conditions;(2)the influence of soil microorganisms needs to be investigated to illustrate the impact of hydrochar on greenhouse gas emissions;(3)combined heavy metal and organic contaminant sorption experiments for hydrochar need to be conducted for large-scale applications;(4)more research needs to be conducted to reveal the economic benefits of hydrochar and the coupling of hydrochar with anaerobic digestion technology.This review suggested that it would be valuable to create a database that contains detailed information on how hydrochar got from different sources,and different preparation conditions can be applied in the environmental field.
基金supported financially by National Natural Science Foundation of China (Nos. 21502233 and 81522043)CAMS Initiative for Innovative Medicine (CAMS-I2M-1-010)+1 种基金the PUMC Youth Fund (33320140175)the State Key Laboratory Fund for Excellent Young Scientists to Youcai Hu (GTZB201401)
文摘Epigenetic modifications have been proved to be a powerful way to activate silent gene clusters and lead to diverse secondary metabolites in fungi. Previously, inactivation of a histone H3 deacetylase in Calcarisporium arbuscula had led to pleiotropic activation and overexpression of more than 75% of the biosynthetic genes and isolation of ten compounds. Further investigation of the crude extract of C. arbuscula Δhda A strain resulted in the isolation of twelve new diterpenoids including three cassanes(1-3), one cleistanthane(4), six pimaranes(5-10), and two isopimaranes(11 and 12) along with two know cleistanthane analogues. Their structures were elucidated by extensive NMR spectroscopic data analysis. Compounds 2 and 4 showed potent inhibitory effects on the expression of MMP1 and MMP2(matrix metalloproteinases family) in human breast cancer(MCF-7) cells.
基金supported financially by the National Key Research and Development Program of China(2018YFA0901900)the CAMS Innovation Fund for Medical Sciences(CIFMS,2016-I2M-1-010,2017-I2M-4-004)+1 种基金Fundamental Research Funds for the Central Universities(2017PT35001)supported by the Drug Innovation Major Project(2018ZX09711001-008-001)
文摘Endophytic fungi are promising producers of bioactive small molecules.Bioinformatic analysis of the genome of an endophytic fungus Penicillium dangeardii revealed 43 biosynthetic gene clusters,exhibited its strong ability to produce numbers of secondary metabolites.However,this strain mainly produce rubratoxins alone with high yield in varied culture conditions,suggested most gene clusters are silent.Efforts for mining the cryptic gene clusters in P.dangeardii,including epigenetic regulation and one-strain-many-compounds(OSMAC)approach were failed probably due to the high yield of rubratoxins.A metabolic shunting strategy by deleting the key gene for rubratoxins biosynthesis combining with optimization of culture condition successfully activated multiple silent genes encoding for other polyketide synthases(PKSs),and led to the trace compounds detectable.As a result,a total of 23 new compounds including azaphilone monomers,dimers,turimers with unprecedented polycyclic bridged heterocycle and spiral structures,as well as siderophores were identified.Some compounds showed significant cytotoxicities,anti-inflammatory or antioxidant activities.The attractive dual PKS s gene clusters for azaphilones biosynthesis were mined by bioinformatic analysis and overexpression of a pathway specific transcription factor.Our work therefor provides an efficient approach to mine the chemical diversity of endophytic fungi.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110167),China。
文摘The rapidly developing resistance of cancers to chemotherapy agents and the severe cytotoxicity of such agents to normal cells are major stumbling blocks in current cancer treatments.Most current chemotherapy agents have significant cytotoxicity,which leads to devastating adverse effects and results in a substandard quality of life,including increased daily morbidity and premature mortality.The death receptor of tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)can sidestep p53-dependent pathways to induce tumor cell apoptosis without damaging most normal cells.However,various cancer cells can develop resistance to TRAIL-induced apoptosis via different pathways.Therefore,it is critical to find an efficient TRAIL sensitizer to reverse the resistance of tumor cells to TRAIL,and to reinforce TRAIL’s ability to induce tumor cell apoptosis.In recent years,traditional Chinese medicines and their active ingredients have shown great potential to trigger apoptotic cell death in TRAIL-resistant cancer cell lines.This review aims to collate information about Chinese medicines that can effectively reverse the resistance of tumor cells to TRAIL and enhance TRAIL’s ability to induce apoptosis.We explore the therapeutic potential of TRAIL and provide new ideas for the development of TRAIL therapy and the generation of new anticancer drugs for human cancer treatment.This study involved an extensive review of studies obtained from literature searches of electronic databases such as Google Scholar and PubMed."TRAIL sensitize"and"Chinese medicine"were the search keywords.We then isolated newly published studies on the mechanisms of TRAIL-induced apoptosis.The name of each plant was validated using certified databases such as The Plant List.This study indicates that TRAIL can be combined with different Chinese medicine components through intrinsic or extrinsic pathways to promote cancer cell apoptosis.It also demonstrates that the active ingredients of traditional Chinese medicines enhance the sensitivity of cancer c
基金This work was supported by grants from the National Natural Science Foundation of China(31730026,81930039,and 81525012).
文摘Stimulator of interferon genes(STING)is an adaptor protein that is critical for effective innate antiviral and antitumor immunity.The activity of STING is heavily regulated by protein ubiquitination,which is fine-tuned by both E3 ubiquitin ligases and deubiquitinases.Here,we report that the deubiquitinase OTUD5 interacts with STING,cleaves its K48-linked polyubiquitin chains,and promotes its stability.Consistently,knockout of OTUD5 resulted in faster turnover of STING and subsequently impaired type I IFN signaling following cytosolic DNA stimulation.More importantly,Lyz2-Cre Otud5^(fl/Y) mice and CD11-Cre Otud5^(fl/Y) mice showed more susceptibility to herpes simplex virus type 1(HSV-1)infection and faster development of melanomas than their corresponding control littermates,indicating that OTUD5 is indispensable for STING-mediated antiviral and antitumor immunity.Our data suggest that OTUD5 is a novel checkpoint in the cGAS-STING cytosolic DNA sensing pathway.
基金Supported by the National Natural Science Foundation of China(No.30801504,30901926,81100530,81070590)The Sci-tech Project of Shaanxi Province(No.2012K19-04-01)
文摘OBJECTIVE:To investigate the effects of artemisinin against proteinuria and glomerular filtration barrier damage in rats with adriamycin-induced nephropathy,and the potential mechanism underpinned the action.METHODS:Forty adriamycin rats were randomly divided into two groups with the ratio of 1︰3;the small-number group served as control group(n=10),and the rats in the large-number group were treated with adriamycin to induce nephropathy;then they were further randomly assigned into 3subgroups:benazepril group(n=10),artemisiningroup(n=10),and adriamycin group(n=10).The benazepril group and artemisinin group were treated with benazepril suspl(5.0 mg/kg daily)and artemisinin suspl(150 mg/kg daily)respectively after being modeled;those in the control group and adriamycin group were intragastrically administered an equivalent volume of distilled water every day.The treatment after model establishment lasted for a total of 4 weeks.The 24 h uric protein,blood biochemicals,renal pathological changes,renal ultrastrutural changes,Nephrin and Podocin proteins and gene expressions were measured by Coomassie brilliant blue assay,completely automatic biochemical analyzer,light microscope,electron microscopy,Western blot and reverse transcription polymerase chain reaction,respectively.RESULTS:The rats in adriamycin group showed a significant increase in 24 h uric protein excretion,serum total cholesterol(TC),triglyceride(TG),blood urea nitrogen(BUN),serum creatinine(Scr)and decrease in albumin(Alb)(P<0.05 or P<0.01).Compared with adriamycin group,artemisinin could reduce uric protein excretion,decrease the serum TC,TG elevation,increase the serum Alb level,up-regulate the expressions of Nephrin and Podocin(P<0.05 or P<0.01),but no statistical significance effects on the levels of BUN,Scr in artemisinin group(P>0.05).The renal pathological and ultrastrutural observation indicate that artemisinin could attenuate the severity of foot process effacement and fusion in the nephropathic rats.CONCLUSION:Artemisinin might have an effe