A hybrid system of a spar-type floating offshore wind turbine and a heaving annular wave energy converter(WEC)provides a promising solution for collocated ocean renewable energy exploitation.The performance of the hyb...A hybrid system of a spar-type floating offshore wind turbine and a heaving annular wave energy converter(WEC)provides a promising solution for collocated ocean renewable energy exploitation.The performance of the hybrid system depends on the dimensions of the WEC.Here an optimization method is proposed to determine the outer radius and the draft of the WEC under the wave condition in a randomly chosen operational site.First,three candidate models are selected based on three operational conditions of energy harvest:(1)The natural frequency of the system is matched with the peak wave frequency in the target site(referred to as synchronized mode),where the wind turbine and the WEC nearly heave together in a near-resonance condition,(2)The natural frequency of the WEC is matched with the peak wave frequency(ring mode),(3)The maximum wave power is harnessed under the peak wave frequency(target mode).Then the candidate modes are evaluated to obtain an optimum.Results show that the extracted wave power under the above operational conditions has an upper bound that can hardly be surpassed by enlarging the dimensions of the WEC only.The optimal annual wave energy production is achieved in the synchronized mode because of the superior performance of WEC over a wide bandwidth of effective energy conversion.展开更多
Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generati...Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.展开更多
As waves in China seas are not high,a wave energy converter consisting of a coaxial annular buoy and a cylindrical buoy that extracts wave energy using two generators through the relative heave motion between the buoy...As waves in China seas are not high,a wave energy converter consisting of a coaxial annular buoy and a cylindrical buoy that extracts wave energy using two generators through the relative heave motion between the buoys and the pitch motion of the cylinder could be a more efficient choice.A dynamic model considering constraints and assuming linear power take-off is established to evaluate the power performance of the device.The influences of two key factors,the diameter of the annular buoy and the power take-off stiffness of the pitching generator,and their couplings on the power performance are analyzed.The power of the pitching generator accounts for a major proportion of the total power.An increase in the annular buoy diameter increases the power of the heaving generator while greatly decreases the power of the pitching generator.An increase in the power take-off stiffness of the pitching generator greatly decreases its power while has little influence on the power of the heaving generator.These two factors also influence the peak period of the total power.Based on the findings and practical limitations,an optimization strategy is proposed.Further,the device is optimized based on a real wave environment in Shandong Province,China.展开更多
The fluid viscosity is known to have a significant effect on the hydrodynamic characteristics which are linked to the power conversion ability of the wave energy converter(WEC). To overcome the disadvantages of case-b...The fluid viscosity is known to have a significant effect on the hydrodynamic characteristics which are linked to the power conversion ability of the wave energy converter(WEC). To overcome the disadvantages of case-by-case study through the experiments and numerical computations employed by the former researches, the viscous effect is studied comprehensively for multiple geometries in the present paper. The viscous effect is expressed as the viscous added mass and damping solved by the free-decay method. The computational fluid dynamics(CFD) method is employed for the calculation of the motion and flow field around the floater. The diameter to draft ratio and bottom shape are considered for the geometrical evaluation on the viscous effect. The results show that a slenderer floater presents a stronger viscous effect. Through the comparisons of the floaters with four different bottom shapes, the conical bottom is recommended in terms of low viscous effect and simple geometry for manufacture. A viscous correction formula for a series of cylindrical floaters is put forward, for the first time, to help the engineering design of outer-floaters of point-absorber WECs.展开更多
The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element ...The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.展开更多
Installing the Edinburgh Duck Wave Energy Converter(ED WEC)on a floating breakwater provides a potential solution to reduce costs and improve the reliability of the ED WEC.To investigate the interactions between the E...Installing the Edinburgh Duck Wave Energy Converter(ED WEC)on a floating breakwater provides a potential solution to reduce costs and improve the reliability of the ED WEC.To investigate the interactions between the ED WEC and the breakwater,a two-dimensional numerical model of a hybrid WEC-breakwater system is established based on Star-CCM+Computational Fluid Dynamics(CFD)software.The wave energy extraction performance,wave attenuation performance,and wave forces on the breakwater of the hybrid system are compared with those of the corresponding single device.The effects of the initial attack angle,the distance between the WEC and the breakwater,and the incident wave height on the pitch motion,energy conversion efficiency,transmission coefficient,and wave forces on the breakwater of the hybrid system are analyzed.The results indicate that combing the ED WEC with a breakwater can improve the energy extraction performance of the ED WEC and reduce the wave forces on the breakwater in shorter-period waves.The conversion efficiency of the hybrid system with the initial attack angle of 42°is the largest in shorter-period waves,but is reduced with the increase of initial attack angle in longer-period waves.The wave attenuation performance of the hybrid system is determined by the draft of the breakwater.The distance between the WEC and the breakwater has little effect on the hybrid system.Wave energy extraction of the ED WEC of the hybrid system decreases significantly with the increase of the incident wave height.展开更多
Edinburgh Duck wave energy converter(ED WEC)has excellent energy extraction performance and shows a great potential to integrate with other marine structures.This paper aims to investigate its wave energy extraction p...Edinburgh Duck wave energy converter(ED WEC)has excellent energy extraction performance and shows a great potential to integrate with other marine structures.This paper aims to investigate its wave energy extraction performance as a WEC and wave attenuation performance as a protection method for shoreline or marine structures.The wave and ED WEC interactions in regular waves are modeled using the Star-CCM+software and verified by comparisons with published experimental results.The motion response,energy conversion efficiency,and transmission coefficient of the ED WEC with different attack angles,rotation center,and incident wave heights are investigated.Results indicate that the ED WEC with an attack angle of 42°and a rotation center of 0.55 m below the mean water line can achieve both good wave energy extraction and wave attenuation performances.The wave energy extraction and wave attenuation performance of the ED WEC decrease significantly with the increase of wave nonlinearity characterized by the wave steepness.This paper can guide the practical application of the ED WEC at the early stage of design.展开更多
Based on the eigenfunction expansion technique, the wave generation by a piston wave maker in a wave flume with a partially reflecting end-wall is studied. The corresponding velocity potential and wave elevation in th...Based on the eigenfunction expansion technique, the wave generation by a piston wave maker in a wave flume with a partially reflecting end-wall is studied. The corresponding velocity potential and wave elevation in the flume are obtained. The present analytical solution is verified by the numerical results obtained from a time-domain higher-order boundary element method in a closed flume. Numerical experiments are further carried out to study the difference between the partial/full reflection boundary and the transmission boundary and the effects of the reflection coefficient and the motion period of the wave maker on the wave height. Meanwhile, the natural frequency of the wave flume can be obtained from the analytical expression. The resonance occurs when the motion frequency is equal to the natural frequency. Even the partial reflection of the end-wall in the wave flume experiments has a great influence on the wave height, therefore, inaccurate measurements would be resulted in long-time simulations, especially when the wave frequency approaches the wave flume natural frequency. The present study can serve as a guidance for the physical experiment in wave flumes.展开更多
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515020036)the Natural Science Foundation of Guangzhou City(Grant No.202201010055)the Fundamental Research Funds for the Central Universities(Grant No.2022ZYGXZR014).
文摘A hybrid system of a spar-type floating offshore wind turbine and a heaving annular wave energy converter(WEC)provides a promising solution for collocated ocean renewable energy exploitation.The performance of the hybrid system depends on the dimensions of the WEC.Here an optimization method is proposed to determine the outer radius and the draft of the WEC under the wave condition in a randomly chosen operational site.First,three candidate models are selected based on three operational conditions of energy harvest:(1)The natural frequency of the system is matched with the peak wave frequency in the target site(referred to as synchronized mode),where the wind turbine and the WEC nearly heave together in a near-resonance condition,(2)The natural frequency of the WEC is matched with the peak wave frequency(ring mode),(3)The maximum wave power is harnessed under the peak wave frequency(target mode).Then the candidate modes are evaluated to obtain an optimum.Results show that the extracted wave power under the above operational conditions has an upper bound that can hardly be surpassed by enlarging the dimensions of the WEC only.The optimal annual wave energy production is achieved in the synchronized mode because of the superior performance of WEC over a wide bandwidth of effective energy conversion.
基金financially supported by the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B1111010001)the National Natural Science Foundation of China (Grant Nos.52071096 and 52201322)+3 种基金the National Natural Science Foundation of China National Outstanding Youth Science Fund Project (Grant No.52222109)Guangdong Basic and Applied Basic Research Foundation (Grant No.2022B1515020036)the Fundamental Research Funds for the Central Universities (Grant No.2022ZYGXZR014)the State Key Laboratory of Coastal and Offshore Engineering through the Open Research Fund Program (Grant No.LP2214)。
文摘Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.
基金supported by the National Natural Science Foundation of China(Grant Nos.52071096,52201322 and 52222109)This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515020036)+1 种基金the Natural Science Foundation of Guangzhou City(Grant No.202201010055)the Fundamental Research Funds for the Central Universities(Grant No.2022ZYGXZR014).
文摘As waves in China seas are not high,a wave energy converter consisting of a coaxial annular buoy and a cylindrical buoy that extracts wave energy using two generators through the relative heave motion between the buoys and the pitch motion of the cylinder could be a more efficient choice.A dynamic model considering constraints and assuming linear power take-off is established to evaluate the power performance of the device.The influences of two key factors,the diameter of the annular buoy and the power take-off stiffness of the pitching generator,and their couplings on the power performance are analyzed.The power of the pitching generator accounts for a major proportion of the total power.An increase in the annular buoy diameter increases the power of the heaving generator while greatly decreases the power of the pitching generator.An increase in the power take-off stiffness of the pitching generator greatly decreases its power while has little influence on the power of the heaving generator.These two factors also influence the peak period of the total power.Based on the findings and practical limitations,an optimization strategy is proposed.Further,the device is optimized based on a real wave environment in Shandong Province,China.
基金financially supported by the National Natural Science Foundation of China(Grant No.51761135013)the High Technology Ship Scientific Research Project from Ministry of Industry and Information Technology of the People’s Republic of China–Floating Security Platform Project(the second stage,201622)+1 种基金the Fundamental Research Fund for the Central University(Grant Nos.HEUCF180104 and HEUCFP201809)the China Scholarship Council(the International Clean Energy Talent Program,2017)
文摘The fluid viscosity is known to have a significant effect on the hydrodynamic characteristics which are linked to the power conversion ability of the wave energy converter(WEC). To overcome the disadvantages of case-by-case study through the experiments and numerical computations employed by the former researches, the viscous effect is studied comprehensively for multiple geometries in the present paper. The viscous effect is expressed as the viscous added mass and damping solved by the free-decay method. The computational fluid dynamics(CFD) method is employed for the calculation of the motion and flow field around the floater. The diameter to draft ratio and bottom shape are considered for the geometrical evaluation on the viscous effect. The results show that a slenderer floater presents a stronger viscous effect. Through the comparisons of the floaters with four different bottom shapes, the conical bottom is recommended in terms of low viscous effect and simple geometry for manufacture. A viscous correction formula for a series of cylindrical floaters is put forward, for the first time, to help the engineering design of outer-floaters of point-absorber WECs.
基金supported by the National Natural Science Foundation of China(51222902,51221961,and 51379032)the Program for New Century Excellent Talents in University(NCET-130076)+2 种基金The Fundamental Research Fund for the Central University(HEUCF140103)The Open Fund of State Key Laboratory of Coastal and Offshore Engineering(LP1407)the Lloyd’s Register Foundation (LRF) through the Joint Centre Involving University College London,Shanghai Jiaotong University and Harbin Engineering University
文摘The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52071096)the Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities (Grant No. 3072020GIP0105)。
文摘Installing the Edinburgh Duck Wave Energy Converter(ED WEC)on a floating breakwater provides a potential solution to reduce costs and improve the reliability of the ED WEC.To investigate the interactions between the ED WEC and the breakwater,a two-dimensional numerical model of a hybrid WEC-breakwater system is established based on Star-CCM+Computational Fluid Dynamics(CFD)software.The wave energy extraction performance,wave attenuation performance,and wave forces on the breakwater of the hybrid system are compared with those of the corresponding single device.The effects of the initial attack angle,the distance between the WEC and the breakwater,and the incident wave height on the pitch motion,energy conversion efficiency,transmission coefficient,and wave forces on the breakwater of the hybrid system are analyzed.The results indicate that combing the ED WEC with a breakwater can improve the energy extraction performance of the ED WEC and reduce the wave forces on the breakwater in shorter-period waves.The conversion efficiency of the hybrid system with the initial attack angle of 42°is the largest in shorter-period waves,but is reduced with the increase of initial attack angle in longer-period waves.The wave attenuation performance of the hybrid system is determined by the draft of the breakwater.The distance between the WEC and the breakwater has little effect on the hybrid system.Wave energy extraction of the ED WEC of the hybrid system decreases significantly with the increase of the incident wave height.
基金financially supported by the National Natural Science Foundation of China(Grant No.52071096)the Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(Grant No.3072020GIP0105).
文摘Edinburgh Duck wave energy converter(ED WEC)has excellent energy extraction performance and shows a great potential to integrate with other marine structures.This paper aims to investigate its wave energy extraction performance as a WEC and wave attenuation performance as a protection method for shoreline or marine structures.The wave and ED WEC interactions in regular waves are modeled using the Star-CCM+software and verified by comparisons with published experimental results.The motion response,energy conversion efficiency,and transmission coefficient of the ED WEC with different attack angles,rotation center,and incident wave heights are investigated.Results indicate that the ED WEC with an attack angle of 42°and a rotation center of 0.55 m below the mean water line can achieve both good wave energy extraction and wave attenuation performances.The wave energy extraction and wave attenuation performance of the ED WEC decrease significantly with the increase of wave nonlinearity characterized by the wave steepness.This paper can guide the practical application of the ED WEC at the early stage of design.
基金supported by the Open Fund of Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No.2009491611)the National Natural Science Foundation of China(Grant Nos.50709005,10772040 and 50921001)the Major National Science and Technology Projects of China(Grant No.2008ZX05026-02)
文摘Based on the eigenfunction expansion technique, the wave generation by a piston wave maker in a wave flume with a partially reflecting end-wall is studied. The corresponding velocity potential and wave elevation in the flume are obtained. The present analytical solution is verified by the numerical results obtained from a time-domain higher-order boundary element method in a closed flume. Numerical experiments are further carried out to study the difference between the partial/full reflection boundary and the transmission boundary and the effects of the reflection coefficient and the motion period of the wave maker on the wave height. Meanwhile, the natural frequency of the wave flume can be obtained from the analytical expression. The resonance occurs when the motion frequency is equal to the natural frequency. Even the partial reflection of the end-wall in the wave flume experiments has a great influence on the wave height, therefore, inaccurate measurements would be resulted in long-time simulations, especially when the wave frequency approaches the wave flume natural frequency. The present study can serve as a guidance for the physical experiment in wave flumes.