High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,...High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,and sample orientations.It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3film.For the curved Nb/PI film,smooth superconducting transitions were obtained at low currents,while unexpected cascade structures were revealed in theρ(T)curves at high currents.We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film.In addition,reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions.We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices.This work reveals the complex transport properties of curved superconducting thin films,providing important insights for further theoretical investigations and practical developments of flexible superconductors.展开更多
Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make i...Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation,thermoelectric devices,and photodetection.For further basic physics studies and potential applications,large-size and high-quality Ta As films are urgently needed.However,it is difficult to grow As-stoichiometry Ta As films due to the volatilization of As during the growth.To solve this problem,we attempted to grow Ta As films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition(PLD).In this work,we found that partial As ions of the Ga As substrate are likely to diffuse into the Ta As films during growth,which was preliminarily confirmed by structural characterization,surface topography and composition analysis.As a result,the As content in the Ta As film was improved and the Ta As phase was achieved.Our work presents an effective method for the fabrication of Ta As films using PLD,enabling possible use of the Weyl semimetal film for functional devices.展开更多
基金This work was supported by the National Key Basic Research Program of China(2021YFA0718700,2017YFA0302900,2017YFA0303003,2018YFB0704102,and 2018YFA0305800)the National Natural Science Foundation of China(11888101,11927808,11834016,11961141008,12174428,and 12274439)+4 种基金the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB25000000,XDB33000000)CAS Interdisciplinary Innovation Team,Beijing Natural Science Foundation(Z190008)CAS through the Youth Innovation Promotion Association(2022YSBR-048)Key-Area Research and Development Program of Guangdong Province(2020B0101340002)the Center for Materials Genome.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2021YFA0718700,2018YFB0704102,2017YFA0303003,2017YFA0302902,2016YFA0300301,and 2021YFA0718802)the National Natural Science Foundation of China(Grant Nos.11927808,11834016,118115301,119611410,11961141008,61727805+5 种基金11961141002)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(CAS)(Grant Nos.QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001)CAS Interdisciplinary Innovation Team,the Strategic Priority Research Program(B)of CAS(Grant Nos.XDB25000000and XDB33000000)the Beijing Natural Science Foundation(Grant No.Z190008)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101340002)the support from the China Postdoctoral Science Foundation(Grant No.2022M711497)。
文摘High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,and sample orientations.It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3film.For the curved Nb/PI film,smooth superconducting transitions were obtained at low currents,while unexpected cascade structures were revealed in theρ(T)curves at high currents.We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film.In addition,reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions.We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices.This work reveals the complex transport properties of curved superconducting thin films,providing important insights for further theoretical investigations and practical developments of flexible superconductors.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718700)the National Natural Science Foundation of China(Grant No.12174347)+1 种基金the Synergetic Extreme Condition User Facility(SECUF)the Center for Materials Genome。
文摘Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation,thermoelectric devices,and photodetection.For further basic physics studies and potential applications,large-size and high-quality Ta As films are urgently needed.However,it is difficult to grow As-stoichiometry Ta As films due to the volatilization of As during the growth.To solve this problem,we attempted to grow Ta As films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition(PLD).In this work,we found that partial As ions of the Ga As substrate are likely to diffuse into the Ta As films during growth,which was preliminarily confirmed by structural characterization,surface topography and composition analysis.As a result,the As content in the Ta As film was improved and the Ta As phase was achieved.Our work presents an effective method for the fabrication of Ta As films using PLD,enabling possible use of the Weyl semimetal film for functional devices.