There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branch...Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.展开更多
Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),th...Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.展开更多
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first obser...Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).展开更多
We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected ...We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.展开更多
The high cost and low efficiency of fatigue tests are bottleneck problem for the anti-fatigue design of metallic materials.For this problem,a theoretical fatigue model is proposed in this study,the possible applicatio...The high cost and low efficiency of fatigue tests are bottleneck problem for the anti-fatigue design of metallic materials.For this problem,a theoretical fatigue model is proposed in this study,the possible applications have also been discussed.Specific results would be introduced in two serial papers,in which the first paper focuses on the model building and the applications on fatigue strength prediction;the second paper put emphasis on the influencing factors of the model parameters and the applications on fatigue strength improvement.In this first paper,a theoretical model is proposed considering both the strength and plastic restrictions of fatigue strength.As the model builds up a brief relationship among yield strength(Y),tensile strength(T)and fatigue strength(F),it is named as the Y-T-F model.Through the verification with fatigue strength data covering various kinds of metallic materials and loading conditions,this Y-T-F model exhibits both generality and accuracy.With the Y-T-F model,the efficient fatigue strength prediction could be conducted by brief linear fitting and calculation,just through yield strength,tensile strength and several known fatigue strength data.Moreover,through its deduced Y-F model,the analytical formula of fatigue strength continuously changing with materials strengthening can be obtained,as well as the maximum value of fatigue strength and corresponding critical yield strength.In summary,the Y-T-F model would be useful for reducing the fatigue tests,thus providing new possibilities on the efficient anti-fatigue design and selection of metallic materials.展开更多
From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ exper...From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ.展开更多
An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization proce...An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization process at lower temperatures,i.e.a packed aluminization followed by a diffusion annealing treatment below its tempering temperature.Indentation tests indicated that the lower-Al surface layer formed on the SMAT sample is more resistant to cracking and has better adhesion to the substrate in comparison with the Al 5Fe 2 layer formed on the as-received sample after the duplex aluminization process.Isothermal steam oxidation measurements showed that the oxidation resistance is increased significantly by the lower-Al surface layer due to the formation of a protective(Fe,Cr)Al 2O 4 layer.The rate constant of oxidation was estimated to decrease from-0.849 mg^2 cm^-4h^-1 of the as-received material to^0.011 mg^2 cm^-4 h^-1 of the AlFe layer at 700 ℃.展开更多
In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics...In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts.展开更多
Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalcul...Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.展开更多
The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonan...The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.展开更多
The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhab...The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.展开更多
From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.Th...From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.展开更多
The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation ...The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented.展开更多
In the first paper,a Y-T-F model was proposed based on the restrictions of both strength and plasticity;the corresponding applications on the fatigue strength prediction have also been discussed.In this second paper,t...In the first paper,a Y-T-F model was proposed based on the restrictions of both strength and plasticity;the corresponding applications on the fatigue strength prediction have also been discussed.In this second paper,the emphasis will be put on the issues of fatigue strength improvement.Based on the primary form of the Y-T-F model,the parameters are further analyzed and quantified,to clarify the influences of various factors on fatigue strength.Firstly,the damage capacity C is proved to be sensitive to the elastic modulus E,which could change with the alloying components and nano-scaled grain boundaries;the increase of E would lead to the increasing C,thus increase the fatigue strength.Secondly,the microstructure characteristic coefficient a,as well as the yield strengthσ_(y) and tensile strengthσ_(b) in the crack initiation region could be influenced by the processing mode,grain size and microstructure uniformity of materials;the change of microstructure characteristics would affect the changing tendency of tensile strength--fatigue strength relation via varying the values of a,σ_(y) andσ_(b).Thirdly,the damage weight coefficientωis found to be a reflection of the fatigue strength declination induced by defects;the defect dimension D,the defect shape correlated stress concentration coefficient Kt,as well as the strengthening level of matrix materialsσ_(b) are all corresponding factors.Quantified correlations between the above parameters and corresponding factors are comprehensively built up,hence obtaining the influences of either a single factor or multiple factors on fatigue strength.This further developed Y-T-F model would be helpful to clarify the direction of fatigue strength improvement,and contribute to the anti-fatigue design optimization of metallic materials.展开更多
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ...During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.展开更多
We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider....We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.We find evidence for the decays ∧c+→∑+η and ∑+η’ with statistical significance of 2.5σ and 3.2σ,respectively.Normalizing to the reference decays ∧c+→∑+π0 and ∑+ω,we obtain the ratios of the branching fractions■and ■to be 0.35±0.16±0.02 and 0.86±0.34±0.04,respectively.The upper limits at the 90% confidence level are set to be■and■.Using BESIII measurements of the branching fractions of the reference decays,we determine B(∧c+→∑+η)=(0.41±0.19±0.05)%(<0.68%)and B(∧c+→∑+η’)=(1.34±0.53 ±0.19)%(<1.9%).Here,the first uncertainties are statistical and the second systematic.The obtained branching fraction of ∧c+→∑+η is consistent with the previous measurement,and the branching fraction of ∧c+→∑+η’ is measured for the first time.展开更多
Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detecto...Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detector at s^(1/2)=4.600 GeV. The processes of e^+e^-→D_s^+■^(*0)K^- and D_s^+■~0K^- are observed for the first time and are found to be dominated by the modes D_s^+D_(s1)(2536)^-and D_s^+D_(s2)~*(2573)^-, respectively. The Born cross sections are measured to be σ~B(e^+e^-→D_s^+■^(*0)K^-) =(10.1±2.3±0.8) pb and σ~B(e^+e^-→D_s^+■~0K^-) =(19.4±2.3± 1.6) pb, and the products of Born cross section and the decay branching fraction are measured to be σ~B(e^+e^-→D_s^+D_(s1)(2536)^-+c.c.)·B(D_(s1)(2536)^-→■^(*0)K^-)=(7.5±1.8±0.7) pb and σ~B(e^+e^-→D_s^+D_(s2)~*(2573)^-+ c.c.)·B(D_(s2)~*(2573)^-→■~0 K^-)=(19.7 ± 2.9 ±2.0) pb. For the D_(s1)(2536)^-and D_(s2)~*(2573)^-mesons, the masses and widths are measured to be M(D_(s1)(2536)^-)=(2537.7±0.5 ±3.1) MeV/c2, Γ(D_(s1)(2536)^-) =(1.7 ±1.2 ±0.6)MeV, and M(D_(s2)~*(2573)^-)=(2570.7±2.0 ±1.7) MeV/c^2, Γ(D_(s2)~*(2573)^-)=(17.2 ±3.6 ±1.1) MeV. The spin-parity of the D_(s2)~*(2573)^-meson is determined to be J^p= 2^+. In addition, the processes e^+e^-→D_s^+■^((*)0)K^-are searched for using the data samples taken at four(two) center-of-mass energies between 4.416(4.527) and 4.575 GeV, and upper limits at the 90% confidence level on the cross sections are determined.展开更多
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key Research and Development Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC,11975118,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265,12061131003)+18 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources and Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF,160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.
基金Supported in part by National Key R&D Program of China under Contracts Nos.Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11975118,11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003,12075252,12192260,12192261,12192262,12192263,12192264,12192265)+19 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(43159800)Collaborative Research Center CRC 1044,FOR 2359,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11975011,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+20 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076STFC)(United Kingdom)Suranaree University of Technology(SUT)Thailand Science Research and Innovation(TSRI)National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374)。
文摘Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).
基金Supported in part by National Key R&D Program of China(Grant Nos.2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(Grant Nos.11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(Grant No.U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(Grant No.758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(Grant No.894790)German Research Foundation DFG(Grant No.443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(Grant No.DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant No.B16F640076)Olle Engkvist Foundation(Grant No.200-0605)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(Grant No.160355)The Royal Society,UK(Grant Nos.DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(Grant No.DE-FG02-05ER41374)。
文摘We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.
基金financially supported by the National Key R&D Program of China under grant No.2017YFB0703002the National Natural Science Foundation of China(NSFC)under grant Nos.U1664253,51901230,51871223,51790482,51771208+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under grant No.XDB22020202the Youth Innovation Promotion Association CAS under grant No.2018226the National Science and Technology Major Project under grant No.2017-VI-0003-0073the LiaoNing Revitalization Talents Program under Grant No.XLYC1808027。
文摘The high cost and low efficiency of fatigue tests are bottleneck problem for the anti-fatigue design of metallic materials.For this problem,a theoretical fatigue model is proposed in this study,the possible applications have also been discussed.Specific results would be introduced in two serial papers,in which the first paper focuses on the model building and the applications on fatigue strength prediction;the second paper put emphasis on the influencing factors of the model parameters and the applications on fatigue strength improvement.In this first paper,a theoretical model is proposed considering both the strength and plastic restrictions of fatigue strength.As the model builds up a brief relationship among yield strength(Y),tensile strength(T)and fatigue strength(F),it is named as the Y-T-F model.Through the verification with fatigue strength data covering various kinds of metallic materials and loading conditions,this Y-T-F model exhibits both generality and accuracy.With the Y-T-F model,the efficient fatigue strength prediction could be conducted by brief linear fitting and calculation,just through yield strength,tensile strength and several known fatigue strength data.Moreover,through its deduced Y-F model,the analytical formula of fatigue strength continuously changing with materials strengthening can be obtained,as well as the maximum value of fatigue strength and corresponding critical yield strength.In summary,the Y-T-F model would be useful for reducing the fatigue tests,thus providing new possibilities on the efficient anti-fatigue design and selection of metallic materials.
基金supported by the following funding sources:Science Committee of the Republic of Armenia Grant No.18T-1C180Australian Research Council and research grant Nos.DP180102629,DP170102389,DP170102204,DP150103061,FT130100303,and FT130100018+22 种基金Austrian Federal Ministry of Education,Science and Research,and Austrian Science Fund No.P 31361-N36Natural Sciences and Engineering Research Council of Canada,Compute Canada and CANARIEChinese Academy of Sciences and research grant No.QYZDJ-SSW-SLH011National Natural Science Foundation of China and research grant Nos.11521505,11575017,11675166,11761141009,11705209,and 11975076LiaoNing Revitalization Talents Program under contract No.XLYC1807135Shanghai Municipal Science and Technology Committee under contract No.19ZR1403000Shanghai Pujiang Program under Grant No.18PJ1401000the CAS Center for Excellence in Particle Physics(CCEPP)the Ministry of Education,Youth and Sports of the Czech Republic under Contract No.LTT17020Charles University grants SVV260448 and GAUK 404316European Research Council,7th Framework PIEF-GA-2013-622527Horizon 2020 Marie Sklodowska-Curie grant agreement No.700525’NIOBE,’Horizon 2020 Marie Sklodowska-Curie RISE project JENNIFER grant agreement No.644294Horizon 2020 ERC-Advanced Grant No.267104NewAve No.638528(European grants)L’Institut National de Physique Nucléaire et de Physique des Particules(IN2P3)du CNRS(France),BMBF,DFG,HGF,MPG and AvH Foundation(Germany)Department of Atomic Energy and Department of Science and Technology(India)Israel Science Foundation grant No.2476/17United States-Israel Binational Science Foundation grant No.2016113Istituto Nazionale di Fisica Nucleare and the research grants BELLE2Japan Society for the Promotion of Science,Grant-in-Aid for Scientific Research grant Nos.16H03968,16H03993,16H06492,16K05323,17H01133,17H05405,18K03621,18H03710,18H05226,19H00682,26220706,and 26400255the National Institute of Informatics,and Science Information NETwork 5(SINET5)the Ministry of Education,Culture,Sports,Science,an
文摘From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ.
基金Financial supports from the Ministry of Science and Technology of the People’s Republic of China (No.2012CB932201)the National Natural Science Foundation of China (No.91226204)the Key Research Program of Chinese Academy of Sciences (No.KGZD-EW-T06)
文摘An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization process at lower temperatures,i.e.a packed aluminization followed by a diffusion annealing treatment below its tempering temperature.Indentation tests indicated that the lower-Al surface layer formed on the SMAT sample is more resistant to cracking and has better adhesion to the substrate in comparison with the Al 5Fe 2 layer formed on the as-received sample after the duplex aluminization process.Isothermal steam oxidation measurements showed that the oxidation resistance is increased significantly by the lower-Al surface layer due to the formation of a protective(Fe,Cr)Al 2O 4 layer.The rate constant of oxidation was estimated to decrease from-0.849 mg^2 cm^-4h^-1 of the as-received material to^0.011 mg^2 cm^-4 h^-1 of the AlFe layer at 700 ℃.
基金supported by"The National Key Research and Development Program of China(No.2018 YFA0703300)""Science and Technology Project of Education Department of Jilin Province(No.JJKH20231086KJ)"Development Project of Jilin Province(No.2021C038-4)。
文摘In this study,interconnected porous Mg-2Zn-xY alloys with different phase compositions were prepared by various Y additions(x=0.4,3,and 6 wt.%)to adjust the compressive properties and energy absorption characteristics.Several characterization methods were then applied to identify the microstructure of the porous Mg-Zn-Y and describe the details of the second phase.Compressive tests were performed at room temperature(RT),200℃,and 300℃to study the impact of the Y addition and testing temperature on the compressive properties of the porous Mg-Zn-Y.The experimental results showed that a high Y content promotes a microstructure refinement and increases the volume fraction of the second phase.When the Y content increases,different Mg-Zn-Y ternary phases appear:I-phase(Mg_(3)Zn_(6)Y),W-phase(Mg_(3)Zn_(3)Y_(2)),and LPSO phase(Mg_(12)ZnY).When the Y content ranges between 0.4%and 6%,the compressive strength increases from 6.30MPa to 9.23 MPa,and the energy absorption capacity increases from 7.33 MJ/m^(3)to 10.97 MJ/m^(3)at RT,which is mainly attributed to the phase composition and volume fraction of the second phase.However,the average energy absorption efficiency is independent of the Y content.In addition,the compressive deformation behaviors of the porous Mg-Zn-Y are altered by the testing temperature.The compressive strength and energy absorption capacity of the porous Mg-Zn-Y decrease due to the softening effect of the high temperature on the struts.The deformation behaviors at different temperatures are finally observed to reflect the failure mechanisms of the struts.
基金Supported in part by National Key R&D Program of China(2020YFA0406300, 2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013,12061131003,12075252)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263, U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800), Collaborative Research Center CRC 1044, FOR 2359, GRK 214Istituto Nazionale di Fisica Nucleare, ItalyMinistry of Development of Turkey under Contract No. DPT2006K-120470National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society, UK(DH140054, DH160214)The Swedish Research CouncilU. S. Department of Energy(DE-FG02-05ER41374, DE-SC-0012069)
文摘Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)under Contracts Nos.(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos.(U1732263,U1832207)CAS Key Research Program of Frontier Sciences under Contract No.(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC under Contract No.(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement No(894790)German Research Foundation DFG under Contracts Nos.(443159800),Collaborative Research Center CRC 1044,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation under Contract No.(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)under Contract No.(2016.0157)The Royal Society,UK under Contracts Nos.(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy under Contracts Nos.(DE-FG02-05ER41374,DE-SC-001206)。
文摘The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.
基金supported by NSF of China(Grants No.50021101)Ministry of Science&Technology of China(G1999064505).
文摘The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented.
基金financially supported by the National Key R&D Program of China under grant No.2017YFB0703002the National Natural Science Foundation of China(NSFC)under grant Nos.U1664253,51901230,51871223,51790482,51501198,51771208,51331007+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under grant No.XDB22020202the Youth Innovation Promotion Association CAS under grant No.2018226the National Science and Technology Major Project under grant No.2017-VI-0003-0073the LiaoNing Revitalization Talents Program under Grant No.XLYC1808027。
文摘In the first paper,a Y-T-F model was proposed based on the restrictions of both strength and plasticity;the corresponding applications on the fatigue strength prediction have also been discussed.In this second paper,the emphasis will be put on the issues of fatigue strength improvement.Based on the primary form of the Y-T-F model,the parameters are further analyzed and quantified,to clarify the influences of various factors on fatigue strength.Firstly,the damage capacity C is proved to be sensitive to the elastic modulus E,which could change with the alloying components and nano-scaled grain boundaries;the increase of E would lead to the increasing C,thus increase the fatigue strength.Secondly,the microstructure characteristic coefficient a,as well as the yield strengthσ_(y) and tensile strengthσ_(b) in the crack initiation region could be influenced by the processing mode,grain size and microstructure uniformity of materials;the change of microstructure characteristics would affect the changing tendency of tensile strength--fatigue strength relation via varying the values of a,σ_(y) andσ_(b).Thirdly,the damage weight coefficientωis found to be a reflection of the fatigue strength declination induced by defects;the defect dimension D,the defect shape correlated stress concentration coefficient Kt,as well as the strengthening level of matrix materialsσ_(b) are all corresponding factors.Quantified correlations between the above parameters and corresponding factors are comprehensively built up,hence obtaining the influences of either a single factor or multiple factors on fatigue strength.This further developed Y-T-F model would be helpful to clarify the direction of fatigue strength improvement,and contribute to the anti-fatigue design optimization of metallic materials.
基金Supported in part by National Key Research and Development Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CAS,INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,FOR 2359,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,Olle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research Council,U.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11235011,11275266,11335008,11425524,11625523,11635010)+16 种基金the Chinese Academy of Sciences(CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1332201,U1532257,U1532258)CAS(KJCX2-YW-N29,KJCX2-YW-N45,QYZDJ-SSW-SLH003)100 Talents Program of CASNational 1000 Talents Program of ChinaINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(Collaborative Research Center CRC 1044,FOR 2359)Istituto Nazionale di Fisica Nucleare,ItalyKoninklijke Nederlandse Akademie van Wetenschappen(KNAW)(530-4CDP03)Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fundThe Swedish Research CouncilU.S. Department of Energy under(DE-FG02-05ER41374,DE-SC-0010118,DE-SC-0010504,DE-SC-0012069)University of Groningen(RuG)the Helmholtzzentrum fuer Schwerionenforschung GmbH(GSI),DarmstadtWCU Program of National Research Foundation of Korea(R32-2008-000-10155-0)
文摘We study the hadronic decays of ∧c+ to the final states ∑+η and ∑+η’,using an e+e-annihilation data sample of 567 pb-1 taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCⅡ collider.We find evidence for the decays ∧c+→∑+η and ∑+η’ with statistical significance of 2.5σ and 3.2σ,respectively.Normalizing to the reference decays ∧c+→∑+π0 and ∑+ω,we obtain the ratios of the branching fractions■and ■to be 0.35±0.16±0.02 and 0.86±0.34±0.04,respectively.The upper limits at the 90% confidence level are set to be■and■.Using BESIII measurements of the branching fractions of the reference decays,we determine B(∧c+→∑+η)=(0.41±0.19±0.05)%(<0.68%)and B(∧c+→∑+η’)=(1.34±0.53 ±0.19)%(<1.9%).Here,the first uncertainties are statistical and the second systematic.The obtained branching fraction of ∧c+→∑+η is consistent with the previous measurement,and the branching fraction of ∧c+→∑+η’ is measured for the first time.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11335008,11425524,11625523,11635010,11735014)+9 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1532257,U1532258,U1732263)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC,Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,Italy,Koninklijke Nederlandse Akademie van Wetenschappen(KNAW)(530-4CDP03)Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0010118,DE-SC-0010504,DE-SC-0012069),University of Groningen(RuG)the Helmholtzzentrum fuer Schwerionenforschung GmbH(GSI),Darmstadt
文摘Studies of e^+e~→D_s^+■^((*)0)K^-and the P-wave charmed-strange mesons are performed based on an e^+e^-collision data sample corresponding to an integrated luminosity of 567 pb^(-1) collected with the BESIII detector at s^(1/2)=4.600 GeV. The processes of e^+e^-→D_s^+■^(*0)K^- and D_s^+■~0K^- are observed for the first time and are found to be dominated by the modes D_s^+D_(s1)(2536)^-and D_s^+D_(s2)~*(2573)^-, respectively. The Born cross sections are measured to be σ~B(e^+e^-→D_s^+■^(*0)K^-) =(10.1±2.3±0.8) pb and σ~B(e^+e^-→D_s^+■~0K^-) =(19.4±2.3± 1.6) pb, and the products of Born cross section and the decay branching fraction are measured to be σ~B(e^+e^-→D_s^+D_(s1)(2536)^-+c.c.)·B(D_(s1)(2536)^-→■^(*0)K^-)=(7.5±1.8±0.7) pb and σ~B(e^+e^-→D_s^+D_(s2)~*(2573)^-+ c.c.)·B(D_(s2)~*(2573)^-→■~0 K^-)=(19.7 ± 2.9 ±2.0) pb. For the D_(s1)(2536)^-and D_(s2)~*(2573)^-mesons, the masses and widths are measured to be M(D_(s1)(2536)^-)=(2537.7±0.5 ±3.1) MeV/c2, Γ(D_(s1)(2536)^-) =(1.7 ±1.2 ±0.6)MeV, and M(D_(s2)~*(2573)^-)=(2570.7±2.0 ±1.7) MeV/c^2, Γ(D_(s2)~*(2573)^-)=(17.2 ±3.6 ±1.1) MeV. The spin-parity of the D_(s2)~*(2573)^-meson is determined to be J^p= 2^+. In addition, the processes e^+e^-→D_s^+■^((*)0)K^-are searched for using the data samples taken at four(two) center-of-mass energies between 4.416(4.527) and 4.575 GeV, and upper limits at the 90% confidence level on the cross sections are determined.