Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources,facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth’s ...Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources,facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth’s crust.In order to understand the limit of drilling depth in the Earth’s crust,we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system.Then the critical temperaturepressure coupling conditions that result in borehole instability are derived.Finally,based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling,the limit of drilling depth in the Earth’s crust is formulated with ground temperature.展开更多
基金the financial supports by the National Natural Science Foundation of China(Grant Nos.50534030 and 51404161)the National Science Foundation for Distinguished Young Scholars of China(Grant No.51225404)
文摘Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources,facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth’s crust.In order to understand the limit of drilling depth in the Earth’s crust,we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system.Then the critical temperaturepressure coupling conditions that result in borehole instability are derived.Finally,based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling,the limit of drilling depth in the Earth’s crust is formulated with ground temperature.
基金supported by the National Natural Science Foundation of China(No.92162103)the Natural Science Foundation of Hunan Province,China(No.2022JJ30699)+1 种基金the Science and Technology Innovation Program of Hunan Province,China(No.2021RC4055)the Open Research Project from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(No.GPMR202112)。