Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Ove...Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Over the past decades, the mechanism of pitting corrosion has attracted corrosion community striving to study. However, the mechanism at the pitting initiation stage is still controversy, due to the difficulty encountered in obtaining precise experimental information with enough spatial resolution.Tracking the accurate sites where initial dissolution occurs as well as the propagation of the dissolution by means of multi-scale characterization is key to deciphering the link between microstructure and corrosion at the atomic scale and clarifying the pitting initiation mechanism. Here, we review our recent progresses in this issue by summarizing the results in three representative materials of 316F, and Super 304H stainless steel as well as 2024-Al alloy, using in situ ex-environmental TEM technique.展开更多
The effect of grain size(in the range from 4 μm to 12 μm) on the hydrogen embrittlement(HE) of 304 austenitic stainless steel(ASS) was studied. HE susceptibility result shows that HE resistance increases with grain ...The effect of grain size(in the range from 4 μm to 12 μm) on the hydrogen embrittlement(HE) of 304 austenitic stainless steel(ASS) was studied. HE susceptibility result shows that HE resistance increases with grain refinement. Electron backscattered diffraction kernel average misorientation(EBSD-KAM)mapping shows that the strain localization can be mitigated by grain refinement. Hence, strain localization sites which act as highways for hydrogen diffusion and preferred crack initiation sites can be reduced along with grain refinement, leading to a high HE resistance. Meanwhile, grain size shows no influence on the strain induced martensite(SIM) transformation during the hydrogen charging slow strain tensile test(SSRT). Hence, the SIM formed during hydrogen charging SSRT is not responsible for the different HE resistance of 304 ASSs with various grain sizes. Hydrogen diffusion is supposed to be controlled by a competition between short-circuit diffusion along random grain boundary(RGB) and hydrogen trapping at dislocations, leading to a maximum hydrogen diffusion coefficient in the 304 ASS with an average grain size of 8 μm.展开更多
The Lobster Eye Imager for Astronomy(LEIA),a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe mission,was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on20...The Lobster Eye Imager for Astronomy(LEIA),a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe mission,was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on2022 July 27.In this paper,we introduce the design and on-ground test results of the LEIA instrument.Using stateof-the-art Micro-Pore Optics(MPO),a wide field of view of 346 square degrees(18.6°×18.6°)of the X-ray imager is realized.An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons,and four large-format complementary metal-oxide semiconductor(CMOS)sensors,each of size 6 cm×6 cm,are used as the focal plane detectors.The instrument has an angular resolution of 4’-8’(in terms of FWHM)for the central focal spot of the point-spread function,and an effective area of 2-3 cm^(2) at 1 keV in essentially all the directions within the field of view.The detection passband is 0.5-4 keV in soft X-rays and the sensitivity is2-3×10^(-11) erg s^(-1) cm^(-2)(about 1 milliCrab)with a 1000 s observation.The total weight of LEIA is 56 kg and the power is 85 W.The satellite,with a design lifetime of 2 yr,operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes.LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation,and by optimizing the working setups of the instrumental parameters.In addition,LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band,albeit with limited useful observing time available.展开更多
The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect...The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect of hot deformation parameters, such as strain rate, deformed temperature and initial grain size on the flow stress behavior was investigated. The activation energy of tested alloy was calculated, which is 378.16kJ/mol; The relationships between the peak stress (σp), the peak stain (εp), the critical strain (εc) and Z parameter were established. The micro structure evolution shows the pre-existing austenite grain boundaries constitute the principal nucleation sites for dynamic recrystallization (DRX), and the initial austenite grain size affects the grain size of DRX slightly. The kinetic mathematical model of DRX of 35CrMo is: XDRX=1-exp(-3.23-2.28) and Ddyn = 2.252× 10Z-0.22.展开更多
By using the ultrasound-assisted liquid phase exfoliation method, Bi_2Te_3 nanosheets are synthesized and deposited onto a quartz plate to form a kind of saturable absorber(SA), in which nonlinear absorption propertie...By using the ultrasound-assisted liquid phase exfoliation method, Bi_2Te_3 nanosheets are synthesized and deposited onto a quartz plate to form a kind of saturable absorber(SA), in which nonlinear absorption properties around 2 μm are analyzed with a home-made mode-locked laser. With the as-prepared Bi_2Te_3 SA employed,a stable passively Q-switched all-solid-state 2 μm laser is successfully realized. Q-switched pulses with a maximum average output power of 2.03 W are generated under an output coupling of 5%, corresponding to the maximum single-pulse energy of 18.4 μJ and peak power of 23 W. The delivered shortest pulse duration and maximum repetition rate are 620 ns and 118 k Hz under an output coupling of 2%, respectively. It is the first presentation of such Bi_2Te_3 SA employed in a solid-state Q-switched crystalline laser at 2 μm, to the best of our knowledge. In comparison with other 2 D materials suitable for pulsed 2 μm lasers, the saturable absorption performance of Bi_2Te_3 SA is proved to be promising in generating high power and high-repetition-rate 2 μm laser pulses.展开更多
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
Fatigue properties of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy sheets containing different numbers of α/β Widmansttten colonies in the thickness direction of the sheets were investigated by tensionetension fatigue testi...Fatigue properties of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy sheets containing different numbers of α/β Widmansttten colonies in the thickness direction of the sheets were investigated by tensionetension fatigue testing. It is found that fatigue properties of the Ti alloy either in low- or high-stress amplitude regimes become more sensitive to the sheet thickness of the Ti alloy as the sheet thickness is comparable to the length scale of the Widmansttten colonies. The basic mechanism of such length scale-sensitive fatigue properties in the Ti alloy was elucidated.展开更多
Intentional solute segregation at grain boundary(GB)can effectively stabilize the nanograined alloys by reducing the excess energy and mobility of GB,but it usually works for binary alloys with sufficient GB segregati...Intentional solute segregation at grain boundary(GB)can effectively stabilize the nanograined alloys by reducing the excess energy and mobility of GB,but it usually works for binary alloys with sufficient GB segregation tendency.Here,we found that the segregation of Cr can be enhanced in a nanostruc-tured Fe-8Cr alloy with insufficient GB segregation tendency through the interaction of another solute Si(1.0 wt.%).After surface mechanical grinding treatment and subsequent annealing,the nanograined Fe-8Cr-1Si is more thermally stable than the nanograined Fe-8Cr,which is mainly attributed to the Si-enhanced Cr segregation as observed by Super-X energy-dispersive X-ray spectroscopy(EDS)mapping system.With the grain refinement to nanoscale,the thermal stability is further improved due to the in-crease of Cr content at GBs and the precipitates formed at appropriate high temperatures.The present finding provides guidance for the development of advanced nanostructured ternary alloys.展开更多
A three-dimensional atom probe (3DAP) technique has been used to characterize the hydrogen dis- tribution on carbides for a high strength AISI 4140 steel. Direct evidence of H atoms trapped at the carbide/ferrite in...A three-dimensional atom probe (3DAP) technique has been used to characterize the hydrogen dis- tribution on carbides for a high strength AISI 4140 steel. Direct evidence of H atoms trapped at the carbide/ferrite interfaces has been revealed by 3DAP mapping. Hydrogen is mainly trapped on car- bide/ferrite interfaces along the grain boundaries. Slow strain rate tensile (SSRT) testing shows that the AIS14140 steel is highly sensitive to hydrogen embrittlement. The corresponding ffactographic mor- phologies of hydrogen charged specimen exhibit brittle fracture feature. Combined with these results, it is proposed that the hydrogen trapping sites present in the grain boundaries are responsible for the hydrogen-induced intergranular fracture of AISI 4140. The direct observation of hydrogen distribution contributes to a better understanding of the mechanism of hydrogen embrittlement.展开更多
Tensile and fracture behaviors of sandwich-structured composites consisting of a Fe-based amorphous layer with a constant thickness and ultrafine-grained Ni layers with different thicknesses were investigated. The res...Tensile and fracture behaviors of sandwich-structured composites consisting of a Fe-based amorphous layer with a constant thickness and ultrafine-grained Ni layers with different thicknesses were investigated. The results indicate that the initiation and the stable propagation of the shear band in the amorphous layer was dominated by the Ni layers due to their strong constraint role. The catastrophic fracture of the amorphous layer was postponed in the sandwich composites through properly increasing the constrained Ni layer thickness, which effectively decreased the shear stress on the shear fracture planes of the amorphous layer, and thus led to stable propagation of the primary SB characterized by the increase in the smooth region size of the shear band.展开更多
Ce is prone to catastrophic oxidation at room temperature and its oxidation resistance is difficult to be improved by alloying.Herein,we found that the oxidation resistance of active metal Ce can be significantly impr...Ce is prone to catastrophic oxidation at room temperature and its oxidation resistance is difficult to be improved by alloying.Herein,we found that the oxidation resistance of active metal Ce can be significantly improved by the addition of 20 at.%Ga.Focused ion beam lift-out technique and scanning transmission electron microscopy analysis disclosed that a discontinuous Ga-rich layer was generated beneath the oxide layer in the coarse-grained Ce-Ga alloy.The Ga-rich layer formed by selective oxidation of Ce acts as a diffusion barrier for Ce outward diffusion and ceases the O/M interfacial reaction when a critical concentration of Ga(75 at.%)is reached.After nanocrystallization,uniform distribution of Ga was achieved.After oxidation,a relatively continuous Ga-rich layer was formed which further enhanced the oxidation resistance.The introduction of noble elements combining with nanocrystallization may provide a novel strategy for the protection of metals with high activity and poor oxidation resistance.展开更多
The role of melt cooling rate on the interface morphology and dislocation configuration between 18R long-period stacking ordered(LPSO)structure and Mg matrix in Mg_(97)Zn_(1)Y_(2)(at.%)alloys was investigated by atomi...The role of melt cooling rate on the interface morphology and dislocation configuration between 18R long-period stacking ordered(LPSO)structure and Mg matrix in Mg_(97)Zn_(1)Y_(2)(at.%)alloys was investigated by atomic-scale HAADF-STEM imaging.The 18R/Mg interface is step-like both in the near-equilibrium alloy and non-equilibrium alloy.Lower cooling rate makes the step size more regular and larger.Only 54R structure can be observed at the interface in the near-equilibrium alloy,and the dislocations are highly ordered.54R and 54R′structure sandwiched by b1 and b2+b3 dislocation arrays,and new dislocation configuration can be detected at the interface in the non-equilibrium alloy,but the dislocations are less ordered.18R/Mg interface containing 54R or 54R′in equilibrium width,parallel to the(010)plane,should be most stable based on elastic calculation.The segregation of solute atoms and its strong interaction with dislocations dominate the LPSO/Mg interface via diffusion-displacive transformation.展开更多
The strength of traditional Al-Mg alloys is relatively low because it mainly relies on solid solution strengthening.Adding a third component to form precipitation can improve their strength,but it usually leads to hig...The strength of traditional Al-Mg alloys is relatively low because it mainly relies on solid solution strengthening.Adding a third component to form precipitation can improve their strength,but it usually leads to high-stress corrosion cracking(SCC)sensitivity due to the formation of high-density precipitates at grain boundaries(GBs).So far,it is still challenging to improve the strength of Al-Mg alloys without re-ducing SCC resistance.Herein,a nanostructured Al-5Mg-3 Zn alloy with a good yield strength of 336 MPa and good elongation was successfully produced.By dynamic plastic deformation and appropriate anneal-ing treatment,near-equiaxed nanograins were introduced in the nanostructured Al-5Mg-3 Zn alloy with a high proportion(71%)of the low-angle grain boundary.TEM statistical investigations show that the pre-cipitation of active T’phase at GBs has been greatly suppressed in the nanostructured Al-5Mg-3 Zn alloy at sensitized conditions,and the area fraction of GB precipitates is reduced from 72%to 21%,which sig-nificantly decreases the SCC susceptibility.This study provides guidance for developing advanced Al-Mg alloy with high SCC resistance.展开更多
Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new eff...Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.展开更多
The porosity and mechanical properties of GH4169(a precipitation strengthened nickel-base superalloy)specimens fabricated using the laser melting deposition technique at different laser powers were investigated.The re...The porosity and mechanical properties of GH4169(a precipitation strengthened nickel-base superalloy)specimens fabricated using the laser melting deposition technique at different laser powers were investigated.The results showed that the dendritic structure with the Laves phase and carbides embedded in the Ni-γ matrix formed in the as-fabricated GH4169 due to the strong temperature gradient and the high cooling rates.Porosity remarkably decreased first and slightly increased subsequently as the laser power increased from 300 to 800 W.The lowest porosity of the specimens characterized by 3D X-ray tomography is 0.28%.The specimens fabricated at 600 W tensiled along the direction perpendicular to the building direction exhibit the average yield strength of 587 MPa,the ultimate tensile strength of 903 MPa,and the elongation at fracture of 13.6%.Furthermore,the fatigue limit of the 600 W fabricated specimens is 173.7 MPa corresponding to the fatigue ratio of 0.1.And the relationship among the porosity,laser power and mechanical properties is discussed.展开更多
We report the properties of more than 600 bursts(including cluster-bursts)detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an ...We report the properties of more than 600 bursts(including cluster-bursts)detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode on UTC 2021 September 25–28,in a series of four papers.The observations were carried out in the band of 1.0–1.5 GHz by using the center beam of the L-band 19-beam receiver.We monitored the source in sixteen1 hr sessions and one 3 hr session spanning 23 days.All the bursts were detected during the first four days.In this first paper of the series,we perform a detailed morphological study of 624 bursts using the two-dimensional frequencytime“waterfall”plots,with a burst(or cluster-burst)defined as an emission episode during which the adjacent emission peaks have a separation shorter than 400 ms.The duration of a burst is therefore always longer than 1 ms,with the longest up to more than 120 ms.The emission spectra of the sub-bursts are typically narrow within the observing band with a characteristic width of~277 MHz.The center frequency distribution has a dominant peak at about 1091.9 MHz and a secondary weak peak around 1327.9 MHz.Most bursts show a frequencydownwarddrifting pattern.Based on the drifting patterns,we classify the bursts into five main categories:downward drifting(263)bursts,upward drifting(3)bursts,complex(203),no drifting(35)bursts,and no evidence for drifting(121)bursts.Subtypes are introduced based on the emission frequency range in the band(low,middle,high and wide)as well as the number of components in one burst(1,2,or multiple).We measured a varying scintillation bandwidth from about 0.5 MHz at 1.0 GHz to 1.4 MHz at 1.5 GHz with a spectral index of 3.0.展开更多
Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-fiel...Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).展开更多
Guided waves in the multilayered one-dimensional quasi-crystal plates are,respectively,investigated in the context of the Bak and elasto-hydrodynamic models.Dispersion curves and phonon and phason displacements are ca...Guided waves in the multilayered one-dimensional quasi-crystal plates are,respectively,investigated in the context of the Bak and elasto-hydrodynamic models.Dispersion curves and phonon and phason displacements are calculated using the Legendre polynomial method.Wave characteristics in the context of these two models are analyzed in detail.Results show that the phonon-phason coupling effects on the first two layers are the same at low frequencies;but,they are more significant on the first layer than those on the second layer at high frequencies.These obtained results lay the theoretical basis of guided-wave nondestructive test on multilayered quasi-crystal plates.展开更多
Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with high Z materials have velocities close to the laser wakefield. It is possible to accelerate those muons with las...Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with high Z materials have velocities close to the laser wakefield. It is possible to accelerate those muons with laser wakefield directly.Therefore for the first time we propose an all-optical ‘Generator and Booster’ scheme to accelerate the produced muons by another laser wakefield to supply a prompt, compact, low cost and controllable muon source in laser laboratories. The trapping and acceleration of muons are analyzed by one-dimensional analytic model and verified by two-dimensional particle-in-cell(PIC) simulation. It is shown that muons can be trapped in a broad energy range and accelerated to higher energy than that of electrons for longer dephasing length. We further extrapolate the dependence of the maximum acceleration energy of muons with the laser wakefield relativistic factor γ and the relevant initial energy E_0. It is shown that a maximum energy up to 15.2 GeV is promising with γ = 46 and E_0= 1.45 Ge V on the existing short pulse laser facilities.展开更多
The irradiation of a target with high laser intensity can lead to self-generation of an intense magnetic field(B-field)on the target surface.It has therefore been suggested that the sheath-driven acceleration of high-...The irradiation of a target with high laser intensity can lead to self-generation of an intense magnetic field(B-field)on the target surface.It has therefore been suggested that the sheath-driven acceleration of high-energy protons would be significantly hampered by the magnetization effect of this self-generated B-field at high enough laser intensities.In this paper,particle-in-cell simulations are used to study this magnetization effect on sheath-driven proton acceleration.It is shown that the inhibitory effect of the B-field on ion acceleration is not as significant as previously thought.Moreover,it is shown that the magnetization effect plays a relatively limited role in high-energy proton acceleration,even at high laser intensities when the mutual coupling and competition between self-generated electric(E-)and B-fields are considered in a realistic sheath acceleration scenario.A theoretical model including the v 3 B force is presented and confirms that the rate of reduction in proton energy depends on the strength ratio between B-and E-fields rather than on the strength of the B-field alone,and that only a small percentage of the proton energy is affected by the self-generated B-field.Finally,it is shown that the degraded scaling of proton energy at high laser intensities can be explained by the decrease in acceleration time caused by the increased sheath fields at high laser intensities rather than by the magnetic inhibitory effect,because of the longer growth time scale of the latter.This understanding of the magnetization effect may pave the way to the generation of high-energy protons by sheath-driven acceleration at high laser intensities.展开更多
基金supported financially by the National Natural Science Foundation of China (Nos. 51771212 and 11327901)the Innovation Fund in IMR (No. 2017-ZD05)
文摘Passive metals have superior resistance to general corrosion but are susceptible to pitting attack in certain aggressive media, leading to material failure with pronounced adverse economic and safety consequences. Over the past decades, the mechanism of pitting corrosion has attracted corrosion community striving to study. However, the mechanism at the pitting initiation stage is still controversy, due to the difficulty encountered in obtaining precise experimental information with enough spatial resolution.Tracking the accurate sites where initial dissolution occurs as well as the propagation of the dissolution by means of multi-scale characterization is key to deciphering the link between microstructure and corrosion at the atomic scale and clarifying the pitting initiation mechanism. Here, we review our recent progresses in this issue by summarizing the results in three representative materials of 316F, and Super 304H stainless steel as well as 2024-Al alloy, using in situ ex-environmental TEM technique.
基金financially supported by the National Natural Science Foundation of China (No. U1608257)
文摘The effect of grain size(in the range from 4 μm to 12 μm) on the hydrogen embrittlement(HE) of 304 austenitic stainless steel(ASS) was studied. HE susceptibility result shows that HE resistance increases with grain refinement. Electron backscattered diffraction kernel average misorientation(EBSD-KAM)mapping shows that the strain localization can be mitigated by grain refinement. Hence, strain localization sites which act as highways for hydrogen diffusion and preferred crack initiation sites can be reduced along with grain refinement, leading to a high HE resistance. Meanwhile, grain size shows no influence on the strain induced martensite(SIM) transformation during the hydrogen charging slow strain tensile test(SSRT). Hence, the SIM formed during hydrogen charging SSRT is not responsible for the different HE resistance of 304 ASSs with various grain sizes. Hydrogen diffusion is supposed to be controlled by a competition between short-circuit diffusion along random grain boundary(RGB) and hydrogen trapping at dislocations, leading to a maximum hydrogen diffusion coefficient in the 304 ASS with an average grain size of 8 μm.
基金supported by the Einstein Probe project,a mission in the Strategic Priority Program on Space Science of CAS(grant Nos.XDA15310000,XDA15052100)in part been supported by the European Union’s Horizon 2020 Program under the AHEAD2020 project(grant No.871158).
文摘The Lobster Eye Imager for Astronomy(LEIA),a pathfinder of the Wide-field X-ray Telescope of the Einstein Probe mission,was successfully launched onboard the SATech-01 satellite of the Chinese Academy of Sciences on2022 July 27.In this paper,we introduce the design and on-ground test results of the LEIA instrument.Using stateof-the-art Micro-Pore Optics(MPO),a wide field of view of 346 square degrees(18.6°×18.6°)of the X-ray imager is realized.An optical assembly composed of 36 MPO chips is used to focus incident X-ray photons,and four large-format complementary metal-oxide semiconductor(CMOS)sensors,each of size 6 cm×6 cm,are used as the focal plane detectors.The instrument has an angular resolution of 4’-8’(in terms of FWHM)for the central focal spot of the point-spread function,and an effective area of 2-3 cm^(2) at 1 keV in essentially all the directions within the field of view.The detection passband is 0.5-4 keV in soft X-rays and the sensitivity is2-3×10^(-11) erg s^(-1) cm^(-2)(about 1 milliCrab)with a 1000 s observation.The total weight of LEIA is 56 kg and the power is 85 W.The satellite,with a design lifetime of 2 yr,operates in a Sun-synchronous orbit of 500 km with an orbital period of 95 minutes.LEIA is paving the way for future missions by verifying in flight the technologies of both novel focusing imaging optics and CMOS sensors for X-ray observation,and by optimizing the working setups of the instrumental parameters.In addition,LEIA is able to carry out scientific observations to find new transients and to monitor known sources in the soft X-ray band,albeit with limited useful observing time available.
基金supported by the National Natural Science Foundation of China(Grant No.50075053).
文摘The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect of hot deformation parameters, such as strain rate, deformed temperature and initial grain size on the flow stress behavior was investigated. The activation energy of tested alloy was calculated, which is 378.16kJ/mol; The relationships between the peak stress (σp), the peak stain (εp), the critical strain (εc) and Z parameter were established. The micro structure evolution shows the pre-existing austenite grain boundaries constitute the principal nucleation sites for dynamic recrystallization (DRX), and the initial austenite grain size affects the grain size of DRX slightly. The kinetic mathematical model of DRX of 35CrMo is: XDRX=1-exp(-3.23-2.28) and Ddyn = 2.252× 10Z-0.22.
基金National Natural Science Foundation of China(NSFC)(61475088,61775119,61378022,61422511)Young Scholars Program of Shandong University(2015WLJH38)Open Research Fund of the State Key Laboratory of Pulsed Power Laser Technology,Electronic Engineering Institute,Hefei,China(SLK2016KF01)
文摘By using the ultrasound-assisted liquid phase exfoliation method, Bi_2Te_3 nanosheets are synthesized and deposited onto a quartz plate to form a kind of saturable absorber(SA), in which nonlinear absorption properties around 2 μm are analyzed with a home-made mode-locked laser. With the as-prepared Bi_2Te_3 SA employed,a stable passively Q-switched all-solid-state 2 μm laser is successfully realized. Q-switched pulses with a maximum average output power of 2.03 W are generated under an output coupling of 5%, corresponding to the maximum single-pulse energy of 18.4 μJ and peak power of 23 W. The delivered shortest pulse duration and maximum repetition rate are 620 ns and 118 k Hz under an output coupling of 2%, respectively. It is the first presentation of such Bi_2Te_3 SA employed in a solid-state Q-switched crystalline laser at 2 μm, to the best of our knowledge. In comparison with other 2 D materials suitable for pulsed 2 μm lasers, the saturable absorption performance of Bi_2Te_3 SA is proved to be promising in generating high power and high-repetition-rate 2 μm laser pulses.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.
基金supported by the National Natural Science Foundation of China (No. 51071158)partially supported by the National Natural Science Foundation of China (Nos. 51171045 and 51371047)the National Basic Research Program of China (No. 2010CB631003)
文摘Fatigue properties of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy sheets containing different numbers of α/β Widmansttten colonies in the thickness direction of the sheets were investigated by tensionetension fatigue testing. It is found that fatigue properties of the Ti alloy either in low- or high-stress amplitude regimes become more sensitive to the sheet thickness of the Ti alloy as the sheet thickness is comparable to the length scale of the Widmansttten colonies. The basic mechanism of such length scale-sensitive fatigue properties in the Ti alloy was elucidated.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(Nos.2017YFA0204401,2017YFA0700700).
文摘Intentional solute segregation at grain boundary(GB)can effectively stabilize the nanograined alloys by reducing the excess energy and mobility of GB,but it usually works for binary alloys with sufficient GB segregation tendency.Here,we found that the segregation of Cr can be enhanced in a nanostruc-tured Fe-8Cr alloy with insufficient GB segregation tendency through the interaction of another solute Si(1.0 wt.%).After surface mechanical grinding treatment and subsequent annealing,the nanograined Fe-8Cr-1Si is more thermally stable than the nanograined Fe-8Cr,which is mainly attributed to the Si-enhanced Cr segregation as observed by Super-X energy-dispersive X-ray spectroscopy(EDS)mapping system.With the grain refinement to nanoscale,the thermal stability is further improved due to the in-crease of Cr content at GBs and the precipitates formed at appropriate high temperatures.The present finding provides guidance for the development of advanced nanostructured ternary alloys.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1608257)
文摘A three-dimensional atom probe (3DAP) technique has been used to characterize the hydrogen dis- tribution on carbides for a high strength AISI 4140 steel. Direct evidence of H atoms trapped at the carbide/ferrite interfaces has been revealed by 3DAP mapping. Hydrogen is mainly trapped on car- bide/ferrite interfaces along the grain boundaries. Slow strain rate tensile (SSRT) testing shows that the AIS14140 steel is highly sensitive to hydrogen embrittlement. The corresponding ffactographic mor- phologies of hydrogen charged specimen exhibit brittle fracture feature. Combined with these results, it is proposed that the hydrogen trapping sites present in the grain boundaries are responsible for the hydrogen-induced intergranular fracture of AISI 4140. The direct observation of hydrogen distribution contributes to a better understanding of the mechanism of hydrogen embrittlement.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.51571199 and 51671050)supported by NSFC(Grant No.51601198)
文摘Tensile and fracture behaviors of sandwich-structured composites consisting of a Fe-based amorphous layer with a constant thickness and ultrafine-grained Ni layers with different thicknesses were investigated. The results indicate that the initiation and the stable propagation of the shear band in the amorphous layer was dominated by the Ni layers due to their strong constraint role. The catastrophic fracture of the amorphous layer was postponed in the sandwich composites through properly increasing the constrained Ni layer thickness, which effectively decreased the shear stress on the shear fracture planes of the amorphous layer, and thus led to stable propagation of the primary SB characterized by the increase in the smooth region size of the shear band.
基金supported by the National Natural Science Foundation of China(No.52101107)the China Postdoctoral Science Foundation(No.2021M703274)CNNC’s 2021 young talents scientific research project(No.75)。
文摘Ce is prone to catastrophic oxidation at room temperature and its oxidation resistance is difficult to be improved by alloying.Herein,we found that the oxidation resistance of active metal Ce can be significantly improved by the addition of 20 at.%Ga.Focused ion beam lift-out technique and scanning transmission electron microscopy analysis disclosed that a discontinuous Ga-rich layer was generated beneath the oxide layer in the coarse-grained Ce-Ga alloy.The Ga-rich layer formed by selective oxidation of Ce acts as a diffusion barrier for Ce outward diffusion and ceases the O/M interfacial reaction when a critical concentration of Ga(75 at.%)is reached.After nanocrystallization,uniform distribution of Ga was achieved.After oxidation,a relatively continuous Ga-rich layer was formed which further enhanced the oxidation resistance.The introduction of noble elements combining with nanocrystallization may provide a novel strategy for the protection of metals with high activity and poor oxidation resistance.
基金This work is supported by the National Natural Science Foundation of China(grant number 51801214 and 51871222)Guangxi Science and Technology Base and Talents Special Project(Guike AD20297034)+2 种基金Liaoning Provincial Natural Science Foundation(2019-MS-335)Research Start-up Funding from Guangxi University of Science and Technology(No.03200150)Natural Science Foundation of Hebei Province of China(grant number E2020208083).
文摘The role of melt cooling rate on the interface morphology and dislocation configuration between 18R long-period stacking ordered(LPSO)structure and Mg matrix in Mg_(97)Zn_(1)Y_(2)(at.%)alloys was investigated by atomic-scale HAADF-STEM imaging.The 18R/Mg interface is step-like both in the near-equilibrium alloy and non-equilibrium alloy.Lower cooling rate makes the step size more regular and larger.Only 54R structure can be observed at the interface in the near-equilibrium alloy,and the dislocations are highly ordered.54R and 54R′structure sandwiched by b1 and b2+b3 dislocation arrays,and new dislocation configuration can be detected at the interface in the non-equilibrium alloy,but the dislocations are less ordered.18R/Mg interface containing 54R or 54R′in equilibrium width,parallel to the(010)plane,should be most stable based on elastic calculation.The segregation of solute atoms and its strong interaction with dislocations dominate the LPSO/Mg interface via diffusion-displacive transformation.
基金This research was financially supported by the National Nat-ural Science Foundation of China(Grant No.52171088)the Young Elite Scientists Sponsorship Program by CAST(grant No.2022QNRC001).We thank X.Si for assistance in sample prepara-tion.
文摘The strength of traditional Al-Mg alloys is relatively low because it mainly relies on solid solution strengthening.Adding a third component to form precipitation can improve their strength,but it usually leads to high-stress corrosion cracking(SCC)sensitivity due to the formation of high-density precipitates at grain boundaries(GBs).So far,it is still challenging to improve the strength of Al-Mg alloys without re-ducing SCC resistance.Herein,a nanostructured Al-5Mg-3 Zn alloy with a good yield strength of 336 MPa and good elongation was successfully produced.By dynamic plastic deformation and appropriate anneal-ing treatment,near-equiaxed nanograins were introduced in the nanostructured Al-5Mg-3 Zn alloy with a high proportion(71%)of the low-angle grain boundary.TEM statistical investigations show that the pre-cipitation of active T’phase at GBs has been greatly suppressed in the nanostructured Al-5Mg-3 Zn alloy at sensitized conditions,and the area fraction of GB precipitates is reduced from 72%to 21%,which sig-nificantly decreases the SCC susceptibility.This study provides guidance for developing advanced Al-Mg alloy with high SCC resistance.
文摘Powder metallurgy is an efficient approach to fabricate varieties of high performance structure materials, function materials and special materials working under limited conditions. Research and development of new efficient technology to form high-density, high-performance and net shape parts is a key to widen application and development of powder materials. Recently, the low-voltage electromagnetic compaction (EMC) has been used by present authors to compacted copper, tin, aluminum powders and the products with 99% relative density have been acquired. In this work, the research has been extended to investigation on the density uniformity of pressed parts. The analysis results show that the density of the part compacted by low-voltage EMC decreases gradually in press direction as static compaction. But it is higher and more homogeneous. The density of the top part increases gradually from the center to the outer, which is just reversal of the bottom part. In some extent, the higher the discharging voltage is, the higher the density is and the more homogeneous the distribution is. In addition, repetitive compaction can improve the density of powder parts and the distribution uniformity.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2017YFB0305800)the National Natural Science Foundation of China(NSFC,Grant No.51771207)the Joint Founds of NSFC Liaoning(Grant No.U1508213).
文摘The porosity and mechanical properties of GH4169(a precipitation strengthened nickel-base superalloy)specimens fabricated using the laser melting deposition technique at different laser powers were investigated.The results showed that the dendritic structure with the Laves phase and carbides embedded in the Ni-γ matrix formed in the as-fabricated GH4169 due to the strong temperature gradient and the high cooling rates.Porosity remarkably decreased first and slightly increased subsequently as the laser power increased from 300 to 800 W.The lowest porosity of the specimens characterized by 3D X-ray tomography is 0.28%.The specimens fabricated at 600 W tensiled along the direction perpendicular to the building direction exhibit the average yield strength of 587 MPa,the ultimate tensile strength of 903 MPa,and the elongation at fracture of 13.6%.Furthermore,the fatigue limit of the 600 W fabricated specimens is 173.7 MPa corresponding to the fatigue ratio of 0.1.And the relationship among the porosity,laser power and mechanical properties is discussed.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.11988101 and 11833009)the Key Research Program of the Chinese Academy of Sciences(Grant No.QYZDJ-SSWSLH021)+6 种基金supported by the Cultivation Project for the FAST scientific Payoff and Research Achievement of CAMS-CASsupported by the Key Research Project of Zhejiang Lab no.2021PE0AC0supported by the National SKA Program of China(2020SKA0120100)the National Key R&D Program of China(2017YFA0402602)the National Natural Science Foundation of China(No.12041303)the CAS-MPG LEGACY projectfunding from the MaxPlanck Partner Group。
文摘We report the properties of more than 600 bursts(including cluster-bursts)detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode on UTC 2021 September 25–28,in a series of four papers.The observations were carried out in the band of 1.0–1.5 GHz by using the center beam of the L-band 19-beam receiver.We monitored the source in sixteen1 hr sessions and one 3 hr session spanning 23 days.All the bursts were detected during the first four days.In this first paper of the series,we perform a detailed morphological study of 624 bursts using the two-dimensional frequencytime“waterfall”plots,with a burst(or cluster-burst)defined as an emission episode during which the adjacent emission peaks have a separation shorter than 400 ms.The duration of a burst is therefore always longer than 1 ms,with the longest up to more than 120 ms.The emission spectra of the sub-bursts are typically narrow within the observing band with a characteristic width of~277 MHz.The center frequency distribution has a dominant peak at about 1091.9 MHz and a secondary weak peak around 1327.9 MHz.Most bursts show a frequencydownwarddrifting pattern.Based on the drifting patterns,we classify the bursts into five main categories:downward drifting(263)bursts,upward drifting(3)bursts,complex(203),no drifting(35)bursts,and no evidence for drifting(121)bursts.Subtypes are introduced based on the emission frequency range in the band(low,middle,high and wide)as well as the number of components in one burst(1,2,or multiple).We measured a varying scintillation bandwidth from about 0.5 MHz at 1.0 GHz to 1.4 MHz at 1.5 GHz with a spectral index of 3.0.
基金supported by the National Natural Science Foundation of China(Grant No.51801214 and 51871222)。
文摘Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).
基金The authors gratefully acknowledge the support by the National Natural Science Foundation of China(No.U1804134 and No.51975189)the Program for Innovative Research Team of Henan Polytechnic University(No.T2017-3)the Key Scientific and Technological Project of Henan Province(Nos.192102210189 and 182102210314).
文摘Guided waves in the multilayered one-dimensional quasi-crystal plates are,respectively,investigated in the context of the Bak and elasto-hydrodynamic models.Dispersion curves and phonon and phason displacements are calculated using the Legendre polynomial method.Wave characteristics in the context of these two models are analyzed in detail.Results show that the phonon-phason coupling effects on the first two layers are the same at low frequencies;but,they are more significant on the first layer than those on the second layer at high frequencies.These obtained results lay the theoretical basis of guided-wave nondestructive test on multilayered quasi-crystal plates.
基金supported by the Science Challenge Project (No. JCKY2016212A505)the National Natural Science Foundation of China (No. 11805182)
文摘Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with high Z materials have velocities close to the laser wakefield. It is possible to accelerate those muons with laser wakefield directly.Therefore for the first time we propose an all-optical ‘Generator and Booster’ scheme to accelerate the produced muons by another laser wakefield to supply a prompt, compact, low cost and controllable muon source in laser laboratories. The trapping and acceleration of muons are analyzed by one-dimensional analytic model and verified by two-dimensional particle-in-cell(PIC) simulation. It is shown that muons can be trapped in a broad energy range and accelerated to higher energy than that of electrons for longer dephasing length. We further extrapolate the dependence of the maximum acceleration energy of muons with the laser wakefield relativistic factor γ and the relevant initial energy E_0. It is shown that a maximum energy up to 15.2 GeV is promising with γ = 46 and E_0= 1.45 Ge V on the existing short pulse laser facilities.
基金the National Key Program for S&T Research and Development(Grant No.2018YFA0404804)the Science Challenge Project(Grant No.TZ2016005 and TZ2018005)+1 种基金the Science and Technology on Plasma Physics Laboratory(Grant No.6142A04200101)the National Natural Science Foundation of China(Grant No.11805181).
文摘The irradiation of a target with high laser intensity can lead to self-generation of an intense magnetic field(B-field)on the target surface.It has therefore been suggested that the sheath-driven acceleration of high-energy protons would be significantly hampered by the magnetization effect of this self-generated B-field at high enough laser intensities.In this paper,particle-in-cell simulations are used to study this magnetization effect on sheath-driven proton acceleration.It is shown that the inhibitory effect of the B-field on ion acceleration is not as significant as previously thought.Moreover,it is shown that the magnetization effect plays a relatively limited role in high-energy proton acceleration,even at high laser intensities when the mutual coupling and competition between self-generated electric(E-)and B-fields are considered in a realistic sheath acceleration scenario.A theoretical model including the v 3 B force is presented and confirms that the rate of reduction in proton energy depends on the strength ratio between B-and E-fields rather than on the strength of the B-field alone,and that only a small percentage of the proton energy is affected by the self-generated B-field.Finally,it is shown that the degraded scaling of proton energy at high laser intensities can be explained by the decrease in acceleration time caused by the increased sheath fields at high laser intensities rather than by the magnetic inhibitory effect,because of the longer growth time scale of the latter.This understanding of the magnetization effect may pave the way to the generation of high-energy protons by sheath-driven acceleration at high laser intensities.