Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AM...Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AMPB) powder was used as a model drug. Starch- and xanthan gum-based food thickeners were examined, with swallowing-aid jelly as a reference. The line-spread test (LST), texture prolife analysis (TPA) were done firstly. In related to AMPB powder mixed with food thickeners solution, a conventional dissolution test simulating the oral cavity was performed, the amlodipine (AMP) concentration and taste sensor output for dissolved medium versus time profiles were developed. The dissolution test at pH 1.2 and 4.5, representing typical gastric conditions for younger or elderly people, was performed in two kinds of thickener solution and swallowing-aid jelly those were mixed with AMPB powder. Results: LST demonstrated that xanthan gum-based food thickeners fulfilled the requirements for patients with dysphagia but that starch-based food thickeners did not. In TPA, hardness and adhesiveness decreased proportionally as the concentration increased for both kinds of food thickener. Conventional dissolution test simulating oral cavity demonstrated the following bitterness ranking: xanthan gum-based food thickener Conclusion: Although xanthan gum-based food thickeners were successful in masking the bitterness of AMP, they may reduce its bioavailability in humans. The 7.1 and 4.7 (w/v) % starch-based thickener show bitterness inhibition under simulated oral cavity conditions and complete dissolution of AMP under simulated gastric conditions.展开更多
文摘Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AMPB) powder was used as a model drug. Starch- and xanthan gum-based food thickeners were examined, with swallowing-aid jelly as a reference. The line-spread test (LST), texture prolife analysis (TPA) were done firstly. In related to AMPB powder mixed with food thickeners solution, a conventional dissolution test simulating the oral cavity was performed, the amlodipine (AMP) concentration and taste sensor output for dissolved medium versus time profiles were developed. The dissolution test at pH 1.2 and 4.5, representing typical gastric conditions for younger or elderly people, was performed in two kinds of thickener solution and swallowing-aid jelly those were mixed with AMPB powder. Results: LST demonstrated that xanthan gum-based food thickeners fulfilled the requirements for patients with dysphagia but that starch-based food thickeners did not. In TPA, hardness and adhesiveness decreased proportionally as the concentration increased for both kinds of food thickener. Conventional dissolution test simulating oral cavity demonstrated the following bitterness ranking: xanthan gum-based food thickener Conclusion: Although xanthan gum-based food thickeners were successful in masking the bitterness of AMP, they may reduce its bioavailability in humans. The 7.1 and 4.7 (w/v) % starch-based thickener show bitterness inhibition under simulated oral cavity conditions and complete dissolution of AMP under simulated gastric conditions.