In many areas around the world, wake surfing has been cited as one of the major causes of lakeshore erosion and turbidity. This paper quantifies the impact related to turbidity and erosion with the use of computationa...In many areas around the world, wake surfing has been cited as one of the major causes of lakeshore erosion and turbidity. This paper quantifies the impact related to turbidity and erosion with the use of computational fluid dynamics (CFD) of boat wakes in shallow water and the build-up of wind driven waves. The energy, type and direction of the boat’s wake are described quantitatively and a table for predicting wind driven waves over varying fetches, depth and wind speeds is provided. The CFD simulation shows that if a wake surf boat is operated 200 ft from shore and in at least 10 ft of water, the environmental impact is minimal.展开更多
文摘In many areas around the world, wake surfing has been cited as one of the major causes of lakeshore erosion and turbidity. This paper quantifies the impact related to turbidity and erosion with the use of computational fluid dynamics (CFD) of boat wakes in shallow water and the build-up of wind driven waves. The energy, type and direction of the boat’s wake are described quantitatively and a table for predicting wind driven waves over varying fetches, depth and wind speeds is provided. The CFD simulation shows that if a wake surf boat is operated 200 ft from shore and in at least 10 ft of water, the environmental impact is minimal.