VVER-1200 (Water-Water Energetic Reactor) represents a significant advancement in nuclear power generation, emphasizing the continuous analysis and enhancement of safety systems for reliable operation. The proposed st...VVER-1200 (Water-Water Energetic Reactor) represents a significant advancement in nuclear power generation, emphasizing the continuous analysis and enhancement of safety systems for reliable operation. The proposed study focuses on simulating combined scenarios involving steam generator tube rupture (SGTR) and AC power loss using core algorithms and models within personal computer transient analyzer (PCTRAN). Reactor kinetic equations, thermal-hydraulic balance, and safety system models are discussed to elucidate their role in simulating SGTR and AC power loss. Safety criteria, boundaries and initial conditions are outlined to provide a comprehensive understanding of the simulation framework. The analysis delves into dynamic behavior of VVER-1200, placing emphasis on thermal-hydraulic implications, essential reactor parameters, and radiation monitoring to facilitate impact evaluation. Continuous monitoring and maintenance of safety systems are underscored to ensure stable core cooling, particularly during proposed transient conditions. Through meticulous analysis and comparison with established benchmarks, this study contributes to bolstering the safety and reliability of VVER-1200 reactors by identifying vulnerabilities, assessing mitigation strategies, and refining emergency response protocols. Practical implications of this study offer a crucial understanding of reactor behavior, safety system performance, and emergency response strategies, thereby improving safety, optimizing operational practices, and reducing risks in nuclear reactor accidents.展开更多
文摘VVER-1200 (Water-Water Energetic Reactor) represents a significant advancement in nuclear power generation, emphasizing the continuous analysis and enhancement of safety systems for reliable operation. The proposed study focuses on simulating combined scenarios involving steam generator tube rupture (SGTR) and AC power loss using core algorithms and models within personal computer transient analyzer (PCTRAN). Reactor kinetic equations, thermal-hydraulic balance, and safety system models are discussed to elucidate their role in simulating SGTR and AC power loss. Safety criteria, boundaries and initial conditions are outlined to provide a comprehensive understanding of the simulation framework. The analysis delves into dynamic behavior of VVER-1200, placing emphasis on thermal-hydraulic implications, essential reactor parameters, and radiation monitoring to facilitate impact evaluation. Continuous monitoring and maintenance of safety systems are underscored to ensure stable core cooling, particularly during proposed transient conditions. Through meticulous analysis and comparison with established benchmarks, this study contributes to bolstering the safety and reliability of VVER-1200 reactors by identifying vulnerabilities, assessing mitigation strategies, and refining emergency response protocols. Practical implications of this study offer a crucial understanding of reactor behavior, safety system performance, and emergency response strategies, thereby improving safety, optimizing operational practices, and reducing risks in nuclear reactor accidents.