期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models
1
作者 Josué de Jesus Oliveira Araújo Ricardo Morais de Miranda +10 位作者 Jeferson Stiver Oliveira de Castro antonio florêncio de figueiredo Ana Cecília Barbosa Pinheiro Sílvia Simone dos Santos Morais Marcos antonio Barros dos Santos Andréia de Lourdes Ribeiro Pinheiro Andréia de Lourdes Ribeiro Pinheiro Fábio dos Santos Gil Heriberto Rodrigues Bitencourt Gustavo Nery Ramos Alves José Ciríaco Pinheiro 《Computational Chemistry》 CAS 2023年第1期1-23,共23页
Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activit... Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities. The multivariate models constructed were applied to the new structures and indicated numbers 19 and 20 as the most prominent for syntheses and biological assays. 展开更多
关键词 ARTEMISININS Antimalarial Potential Molecular Electrostatic Potential Ligand-Heme Interaction Multivariate Models
下载PDF
Design of N-11-Azaartemisinins Potentially Active against Plasmodium falciparum by Combined Molecular Electrostatic Potential, Ligand-Receptor Interaction and Models Built with Supervised Machine Learning Methods
2
作者 Jeferson Stiver Oliveira de Castro José Ciríaco Pinheiro +5 位作者 Sílvia Simone dos Santos de Morais Heriberto Rodrigues Bitencourt antonio florêncio de figueiredo Marcos antonio Barros dos Santos Fábio dos Santos Gil Ana Cecília Barbosa Pinheiro 《Journal of Biophysical Chemistry》 CAS 2023年第1期1-29,共29页
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m... N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation. 展开更多
关键词 Antimalarial Design MEP Ligand-Receptor Interaction Supervised Machine Learning Methods Models Built with Supervised Machine Learning Methods
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部