Various models have been proposed in the literature to study non-negative integer-valued time series. In this paper, we study estimators for the generalized Poisson autoregressive process of order 1, a model developed...Various models have been proposed in the literature to study non-negative integer-valued time series. In this paper, we study estimators for the generalized Poisson autoregressive process of order 1, a model developed by Alzaid and Al-Osh [1]. We compare three estimation methods, the methods of moments, quasi-likelihood and conditional maximum likelihood and study their asymptotic properties. To compare the bias of the estimators in small samples, we perform a simulation study for various parameter values. Using the theory of estimating equations, we obtain expressions for the variance-covariance matrices of those three estimators, and we compare their asymptotic efficiency. Finally, we apply the methods derived in the paper to a real time series.展开更多
GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characte...GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.展开更多
Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation...Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation methods developed are also related to estimation methods based on generalized estimating equations but with the advantage of having statistics for model testing. The methods proposed overcome numerical problems often encountered when the probability mass functions have no closed forms which prevent the use of maximum likelihood (ML) procedures and in general, ML procedures do not lead to distribution free model testing statistics.展开更多
文摘Various models have been proposed in the literature to study non-negative integer-valued time series. In this paper, we study estimators for the generalized Poisson autoregressive process of order 1, a model developed by Alzaid and Al-Osh [1]. We compare three estimation methods, the methods of moments, quasi-likelihood and conditional maximum likelihood and study their asymptotic properties. To compare the bias of the estimators in small samples, we perform a simulation study for various parameter values. Using the theory of estimating equations, we obtain expressions for the variance-covariance matrices of those three estimators, and we compare their asymptotic efficiency. Finally, we apply the methods derived in the paper to a real time series.
文摘GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.
文摘Generalized method of moments based on probability generating function is considered. Estimation and model testing are unified using this approach which also leads to distribution free chi-square tests. The estimation methods developed are also related to estimation methods based on generalized estimating equations but with the advantage of having statistics for model testing. The methods proposed overcome numerical problems often encountered when the probability mass functions have no closed forms which prevent the use of maximum likelihood (ML) procedures and in general, ML procedures do not lead to distribution free model testing statistics.