It is well known that the use of Helmholtz decomposition theorem for static vector fields , when applied to the time dependent vector fields , which represent the electromagnetic field, allows us to obtain instan...It is well known that the use of Helmholtz decomposition theorem for static vector fields , when applied to the time dependent vector fields , which represent the electromagnetic field, allows us to obtain instantaneous-like solutions all along . For this reason, some people thought (see e.g. [1] and references therein) that the Helmholtz theorem cannot be applied to time dependent vector fields and some modification is wanted in order to get the retarded solutions. However, the use of the Helmholtz theorem for static vector fields is correct even for time dependent vector fields (see, e.g. [2]), so a relation between the solutions was required, in such a way that a retarded solution can be transformed in an instantaneous one, and conversely. On this paper we want to suggest, following most of the time the mathematical formalism of Woodside in [3], that: 1) there are many Helmholtz decompositions, all equally consistent, 2) each one is naturally related to a space-time structure, 3) when we use the Helmholtz decomposition for the electromagnetic potentials it is equivalent to a gauge transformation, 4) there is a natural methodological criterion for choosing the gauge according to the structure postulated for a global space-time, 5) the Helmholtz decomposition is the manifestation at the level of the fields that a gauge is involved. So, when we relate the retarded solution to the instantaneous one what we do is to change the gauge and the space-time. And, if the Helmholtz decompositions are related to a space-time structure, and are equivalent to gauge transformations, each gauge transformation is natural for a specific space-time. In this way, a Helmholtz decomposition for Euclidean space is equivalent to the Coulomb gauge and a Helmholtz decomposition for the Minkowski space is equivalent to the Lorenz gauge. This leads us to consider that the theories defined by different gauges may be mathematically equivalent, because they can be related by means of a gauge transformation, but they are not empirically equiv展开更多
In the Jefimenko’s generalized theory of gravitation, it is proposed the existence of certain potentials to help us to calculate the gravitational and cogravitational fields, such potentials are also presumed non-inv...In the Jefimenko’s generalized theory of gravitation, it is proposed the existence of certain potentials to help us to calculate the gravitational and cogravitational fields, such potentials are also presumed non-invariant under certain gauge transformations. In return, we propose that there is a way to perform the calculation of certain potentials that can be derived without using some kind of gauge transformation, and to achieve this we apply the Helmholtz’s theorem. This procedure leads to the conclusion that both gravitational and cogravitational fields propagate simultaneously in a delayed and in an instant manner. On the other hand, it is also concluded that these potentials thus obtained can be real physical quantities, unlike potentials obtained by Jefimenko, which are only used as a mathematical tool for calculating gravitational and cogravitational fields.展开更多
文摘It is well known that the use of Helmholtz decomposition theorem for static vector fields , when applied to the time dependent vector fields , which represent the electromagnetic field, allows us to obtain instantaneous-like solutions all along . For this reason, some people thought (see e.g. [1] and references therein) that the Helmholtz theorem cannot be applied to time dependent vector fields and some modification is wanted in order to get the retarded solutions. However, the use of the Helmholtz theorem for static vector fields is correct even for time dependent vector fields (see, e.g. [2]), so a relation between the solutions was required, in such a way that a retarded solution can be transformed in an instantaneous one, and conversely. On this paper we want to suggest, following most of the time the mathematical formalism of Woodside in [3], that: 1) there are many Helmholtz decompositions, all equally consistent, 2) each one is naturally related to a space-time structure, 3) when we use the Helmholtz decomposition for the electromagnetic potentials it is equivalent to a gauge transformation, 4) there is a natural methodological criterion for choosing the gauge according to the structure postulated for a global space-time, 5) the Helmholtz decomposition is the manifestation at the level of the fields that a gauge is involved. So, when we relate the retarded solution to the instantaneous one what we do is to change the gauge and the space-time. And, if the Helmholtz decompositions are related to a space-time structure, and are equivalent to gauge transformations, each gauge transformation is natural for a specific space-time. In this way, a Helmholtz decomposition for Euclidean space is equivalent to the Coulomb gauge and a Helmholtz decomposition for the Minkowski space is equivalent to the Lorenz gauge. This leads us to consider that the theories defined by different gauges may be mathematically equivalent, because they can be related by means of a gauge transformation, but they are not empirically equiv
文摘In the Jefimenko’s generalized theory of gravitation, it is proposed the existence of certain potentials to help us to calculate the gravitational and cogravitational fields, such potentials are also presumed non-invariant under certain gauge transformations. In return, we propose that there is a way to perform the calculation of certain potentials that can be derived without using some kind of gauge transformation, and to achieve this we apply the Helmholtz’s theorem. This procedure leads to the conclusion that both gravitational and cogravitational fields propagate simultaneously in a delayed and in an instant manner. On the other hand, it is also concluded that these potentials thus obtained can be real physical quantities, unlike potentials obtained by Jefimenko, which are only used as a mathematical tool for calculating gravitational and cogravitational fields.