期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Advanced Computing for Cardiovascular Disease Prediction
1
作者 Santosh Gaire Poshan Belbase +1 位作者 amrit kafle Rajendra Bhandari 《Open Journal of Statistics》 2024年第3期228-242,共15页
Developing a predictive model for detecting cardiovascular diseases (CVDs) is crucial due to its high global fatality rate. With the advancements in artificial intelligence, the availability of large-scale data, and i... Developing a predictive model for detecting cardiovascular diseases (CVDs) is crucial due to its high global fatality rate. With the advancements in artificial intelligence, the availability of large-scale data, and increased access to computational capability, it is feasible to create robust models that can detect CVDs with high precision. This study aims to provide a promising method for early diagnosis by employing various machine learning and deep learning techniques, including logistic regression, decision trees, random forest classifier, extreme gradient boosting (XGBoost), and a sequential model from Keras. Our evaluation identifies the random forest classifier as the most effective model, achieving an accuracy of 0.91, surpassing other machine learning and deep learning approaches. Close behind are XGBoost (accuracy: 0.90), decision tree (accuracy: 0.86), and logistic regression (accuracy: 0.70). Additionally, our deep learning sequential model demonstrates promising classification performance, with an accuracy of 0.80 and a loss of 0.425 on the validation set. These findings underscore the potential of machine learning and deep learning methodologies in advancing cardiovascular disease prediction and management strategies. 展开更多
关键词 Machine Learning Deep Learning Classification Performance Matrix ACCURACY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部