The inclusion complexation behavior of 2,5-Bis(5-tert-butyl-benzoxazol-2yl)-thiophene (UVOB) with native β-cyclodextrin (βCD) and βCD-monochlorotriazinyl (βCD-MCT) was evaluated by fluorescence spectroscopy. The a...The inclusion complexation behavior of 2,5-Bis(5-tert-butyl-benzoxazol-2yl)-thiophene (UVOB) with native β-cyclodextrin (βCD) and βCD-monochlorotriazinyl (βCD-MCT) was evaluated by fluorescence spectroscopy. The association constant (K<sub>s</sub>), stoichiometry, , and were evaluated at 25℃ ± 0.1℃ in phosphate buffer solution (pH = 10.5, 0.1 mo•dm<sup>–3</sup>) in order to find out the complex formation ability and stability. Fluorescence enhancement for UVOB and UVBNB with both CDs has been observed as a result of the complex formation. A stoichiometry 1:1 for UVOB in both CDs was observed;a stoichiometry 3:1 for UVBNB in both CDs has been observed. The K<sub>s</sub>values for UVOB were 4916 ± 137 M<sup>–1</sup> and 655 ± 19 M<sup>–1</sup> (acetone: water 90/10, v/v) with βCD and βCD-MCT, respectively. The value obtained indicates a spontaneous and stable complex formation, but the complex βCD-UVOB showed high K<sub>s </sub>value as an indicative of a high concentration of complex formed. Additionally, K<sub>s </sub>and thermodynamic parameters and were evaluated in a commercial product UVBNB (UVOB, 13%, v/v). In aqueous solution, the values obtained were 2552 ± 115 and 1787 ± 75 M<sup>–1</sup> respectively. Complexation of UVOB with CDs is an interesting approach for utilization of UVOB in aqueous systems without the need of solvents and or surfactants used in commercial product (UVBNB).展开更多
文摘The inclusion complexation behavior of 2,5-Bis(5-tert-butyl-benzoxazol-2yl)-thiophene (UVOB) with native β-cyclodextrin (βCD) and βCD-monochlorotriazinyl (βCD-MCT) was evaluated by fluorescence spectroscopy. The association constant (K<sub>s</sub>), stoichiometry, , and were evaluated at 25℃ ± 0.1℃ in phosphate buffer solution (pH = 10.5, 0.1 mo•dm<sup>–3</sup>) in order to find out the complex formation ability and stability. Fluorescence enhancement for UVOB and UVBNB with both CDs has been observed as a result of the complex formation. A stoichiometry 1:1 for UVOB in both CDs was observed;a stoichiometry 3:1 for UVBNB in both CDs has been observed. The K<sub>s</sub>values for UVOB were 4916 ± 137 M<sup>–1</sup> and 655 ± 19 M<sup>–1</sup> (acetone: water 90/10, v/v) with βCD and βCD-MCT, respectively. The value obtained indicates a spontaneous and stable complex formation, but the complex βCD-UVOB showed high K<sub>s </sub>value as an indicative of a high concentration of complex formed. Additionally, K<sub>s </sub>and thermodynamic parameters and were evaluated in a commercial product UVBNB (UVOB, 13%, v/v). In aqueous solution, the values obtained were 2552 ± 115 and 1787 ± 75 M<sup>–1</sup> respectively. Complexation of UVOB with CDs is an interesting approach for utilization of UVOB in aqueous systems without the need of solvents and or surfactants used in commercial product (UVBNB).